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Gapter 1

Introduction

1.1 Preface

How ColSim came into being, who helped, who sponsored, etc.

1.2 Characteristics of ColSim

What ColSim can do, what it does better than competing programs.

Modular structure, plug flow modeling, small time steps. Forward integration of
differential equation. Simulation environment for developping and testing controlling
algorithms
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Installation Guide

2.1 General remarks

In principle, ColSim is designed to run under Linux or Unix. It can be used under
Windows NT with some restrictions concerning the graphical in-and output. However,
at the current date, this installation chapter deals only with the installation into a
Linux system. With SuSE Linux, it is most easy to identiy the needed auxiliary
program packages, but there should be no serious problems with other Linux versions.

2.2 Linux/Unix

A compressed ColSim program package can be obtained from ? The file, e.g. col-

sim.1.tgz, depending on the version number, should be placed in the home directory.
Then, it’s advantageous to check that the following programs and packages are available
in the computer system:

e gawk: Program used mainly for quick data evaluation, i.e. summing up of data
files, etc.

e gmake: For compiling and linking source code files and producing an executable
code.

e gce: Gnu C Compiler.

e SuSE package tcl_new (the version based upon tclsh8.0 or newer version) or
corresponding package from other Linux version.

e SuSE package tk_new (the version based upon wish8.0 or newer version) or
corresponding package. This and the above package are used e.g. for the ColSim
menu.

e xfig: Interactive drawing tool which is used to create a graphical representation
of the hydraulic system serving as input for the simulation. However, in Col-
Sim versions later than 0.57, there is a customized xfig version included which
simplifies the editing of parameters.

e vim or vi: Simple text editor which can be invoked by the ColSim menu panel.
Optional.

e gnuplot: graphic program which is used for monitoring the simulation progress.
e tar: Program to unpack the ColSim program package.

e gzip: Program to unzip the ColSim program package.

If all programs listed above are present, type tar xfz colsim.tgz in some window.
Hereby, the subdirectory ColSim is created.In the following, this directory will be
called the “ColSim directory” and will be referenced as ./. Subdirectories of the ColSim
directory like e.g. cnv are referenced as ./cnv/.

To finish the installation, change into the ColSim directory with cd ColSim and type
INSTALL.This shell script only fails if the path to one’s own home directory is not set
and direct execution of programs present in the home directory by typing their name
only does not work, rather ./name must be typed. If this is the case, add the path to
your PATH variable or ask the system administrator to do it.
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Starting the simulation

3.1 Menu based simulation

3.1.1 Start the simulation

In order to check whether the instal-
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ColSim lation was successful, we try a first sim-
Demo ulation run with a very simple system.
fig2dek Type ColSim in the directory ColSim. In
pres the following, this will be our reference
B directory, called the “ ColSim directory”,

and all paths given are assumed to start
wake up from here.
- Now all availabe ColSim systems
ik ik are listed in a small grey window
= titled project_ organizer. The steps
explained in the following apply to each

xfig system, of coarbut now we choose
vim sim.dek a concrete example: The demonstration
vim xfig system “Demo”. With a double click

on “Demo”; the system is selected. Note
that this procedure can be abbreviated
by typing ColSim Demo directly.
The first thing which is done now is the
Figure 3.1: configuration of the chosen system. This
means, all the modules needed are collected, translated, linked together and an
exectuable program called sim is created. See section 6.2 for details. Then, the
ColSim menu® pops up, like shown in fig.3.1). To select an item click on it once with

3
‘I%

If the menu doesn’t appear, there are probably problems with the program wish. Make sure that
the packages tcl new and tk new are installed and try to locate wish in your system. Maybe you
have to correct the path to wish in the shell script ColSim. If nothing helps, go on with the manual
simulation described in section 3.2.
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Figure 3.2: Demo system

the left mouse button.

The next step is to select fig2dek, which starts the reading in of information about
the system’s modules, their interconnections and parameters. When this process is
finished, the simulation can be started by choosing sim.

3.1.2 Step by step

You may want to know what is happening now. Here, we give a short overview, a more
detailed explanation can be found in chapter 6.

Conversion of the xfig-object

Activating fig2dek started the conversion of the xfig-graphics object Demo.fig into
a so-called simulation dek Demo.dek,containing all the information for the simulation
program in more compact form. In ColSim, the input for a simulation run -the ar-
rangement of pipes, storages, pumps, etc., and all their parameters - is defined by a
graphical object drawn with the public domain graphics software xfig. Take a look at
the xfig-picture of the example system Demo by selecting xfig in the menu. What you
see is something like fig.”3.2.

Though it may appear confusing at first sight, it’s in fact easy to survey after a while
due to its modular structure. Our demo system consists of the following components,
called units in ColSim:



1. Hydraulic components:
A storage, a heater (called auxiliary heater since a solar collector is considered
as the main heat source) and a pump, forming a hydraulic cycle in which fluid
is circulating. Since in ColSim the system energy is balanced accurately at every
timestep, only closed hydraulic cycles can be calculated.
The hydraulic ports of the units in such a cycle are interconnected by solid blue
and red lines indicating hot and cold water flow.
Note that the color and the shape of the lines are only chosen for better survey!
The only thing really necessary for a correct connection between two units is
that one endpoint of the line lies within the outlet box of one unit and the other
endpoint within the inlet box of the other unit. In-and outlet boxes can be
distinguished by their inwardly and outwardly facing arrow tips, respectively.
If during the simulation run the pump is turned on, the heater heats up the
incoming water to 50 C. The warm water is fed into the storage at its top, while
the water to be warmed up leaves the storage at a position specified to be at 70
% of the storage’s height in this example.

2. The controlling components:

A controller unit and the unit simcontrol. The latter must be present in every
system to be simulated though it is not connected to any other unit: It contains
information about the start and end date of the simulation and the lenght of one
time step.

The controller unit is connected with dashed black lines to the pump and to one
or two temperature sensors in the tank. It compares the storage’s temperature at
the top with a set temperature and sends an “on” signal to the pump if reheating
is necessary.

3. The output components:
A so called gnuplotter which serves for the observation of variables during the
simulation run: All quantities connected to inlets of the gnuplotter device are
plotted as a function of time with the help of the public domain program gnuplot.
There also is a unit called printer which writes all data arriving at its inlets to
the file sim_out0.dat in the ColSim directory.

More about the individual types in ColSim can be found in chapter 5. Generally, the
modules like storages, pipes, controllers, etc. belonging to a ColSim system are called
"units". They can appear more than once in the system and are assigned a temporary
unit number at the beginning of every simulation run to distinguish them. However,
the generic objects like e.g. the storage are unique. They are called “types” and are
associated with a source code file mostly bearing the same name and describing the
physical behaviour of the type. Each type has a specific type number given as well in
its source code file as in its xfig-representation.

How the unit’s parameters are hidden in the graphics file and how new systems
can be designed by editing parameters and rearranging the units will be discussed in
chapter 4.

To summarize, the xfig-representation of the system contains all information about
which types are used in the system, how they are interconnected and how their param-
eters are set. The direct input for the simulation program, however, is the simulation
“dek” containing the same information as the graphics file, but in more comprised form.

Choosing vim sim.dek in the ColSim menu opens a simple editor? showing the
simulation dek of the system under consideration. For each unit of the system, all
parameters are listed, and also the interconnections with other units: The block which
is titled “INPUTS” lists for every input the number of the unit and the outlet it is
connected to. If an input is not connected, both entries are zero.

The file ./sim.dek is actually a link to the file ./projects/Demo/Demo.dek, but a
copy can be found in ./cnv/sim_new.dek.

Simulation run

Selecting sim in the ColSim menu starts the simulation run. First, some information
is put out about the units contained in this system and the order in which they will
be called.> The day of the year currently being simulated is printed and two gnuplot
windows are opened. Hit the button sleep in order to halt the program execution at
the end of the current day.

In the upper window, several system temperatures are plotted as a function of the
simulation time in hours:

e The red curve corresponds to the temperature at the top of the storage. Here,
the hot water from the heater enters. Obviously, the temperature approaches 50
C when the pump is turned on.

e The green curve is the temperature at 70 % of the storage’s height. Here, the
temperature sensor for the controller is placed. The pump is turned on if this
temperature falls below 42 C.

e The blue curve is the temperature at 30 % of the storage’s height. It is not
influenced by the heating intervals, but it rises steadily due to heat conduction.

e The pink curve displays the temperature at the storage’s bottom. It also rises
only due to heat exchange with the upper layers via heat conduction.

In the upper right corner of the upper window, information about the curves is given
which is read off the xfig-representation of the storage.

Choose the button xfig and see how the plotted curves arise from the connections of
the gnuplotter’s inlet boxes with the units outlet boxes. For the gnuplotter’s
connections, colored thin dashed lines are chosen which match the colors in which the
connected quantities will be plotted latter.

2A few tips for the editor vim: By typing i the insert mode is started, with the Esc key, it is left
again. Only outside of the insert mode, the file can be saved with :w and the editor left with :q.

3To study this output at the beginning it is recommendable to start the simulation manually by
typing sim | more in the ColSim directory.



In the second gnuplot window, the red curve corresponds to the control signal sent
from the controller unit to the pump and takes the values of 1 or 0, depending on
whether the pump is on or off.

The green line visualizes the power output of the heater. Note that this curve is
multiplied with a scaling factor given in the legend of the plot. The blue curve shows
the mass flow through the pump in kg/h, also with a scaling factor.

When the button wake up is hit, the program execution continues. When it
is finished, an output data file can be found in the ColSim directory. Type less
sim_outO.dat to scroll in the file. The first column contains the simulation time in
hours, the second the mass flow through the pump in kg/h, the third the heater power
in W, the fourth the pump power in W, the fifth the power arriving in the storage, the
sixth the storage’s losses to the ambient in W, the seventh the temperature at sensor 2
in C. All data are averaged over one minute. The printer output can also be changed
to integral values or current values, see section 5.5.6.

3.2 Manual simulation

ColSim can also be used without the menu, i.e. without the shell script Co1sim. Note,
however, that this script also configures an environment for the special system given as
an argument in the call ColSim SystemName, which means that special links are created
and paths are set. Therefore, in the following, it is assumed that both the installation
script as well as the ColSim script were executed once without problems. If this is not
the case, you should take a look at the scripts e.g. with the help of an editor and try
to execute one line after the other until the problem is detected.

If the scripts were executed once before, only a few commands are needed to con-
figure the system.

3.2.1 Manual configuration

In the following, all necessary steps of the configuration process are listed for the
example system Demo (which can be replaced by any other system), but for a detailed
explanation please see section 6.2 about the structure of ColSim. These steps need to
be executed if another system was simulated before.

e Change into the directory ./cnv and type rm running_config.cfg (this is not
really necessary, but sometimes advantageous).

e Type config ../projects/Demo/Demo.cfg.

e Change into the directory ./src, (type touch *.c if you want to be one the safe
side) and then make or m which creates the executable program sim in the ColSim
directory.

e Now change into the directory ./cnv, type rm sim.fig and create a link with 1n
-8 ../projects/Demo/Demo.fig sim.fig).
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e Change back into the ColSim directory, type rm load.dat and set the following
link: 1n -s projects/Demo/load.Demo.dat load.dat.

3.2.2 Manual start of simulation

To start the simulation of the example system Demo:

e Change into the directory ./cnv and check that sim.figisalink to ../projects/Demo/Demo.fig.

If this is not the case, set the link like explained in the paragraph above.

e Type cnv.exe, which is the pendant to the button fig2dek of the menu. When
the conversion of sim.fig into sim_new.dek is finished, change back into the
ColSim directory.

e If a link is set from sim.dek to a file in the ./projects directory, it must be re-
moved (rm sim.dek) and reset with the following command: 1n -s cnv/sim_new.dek
sim.dek.

e With the command sim, the simulation can be started now. For an explanation
of the system and the simulation output, please see section 3.1.2.

The xfig-file can be viewed by typing xfig & and loading the xfig file Demo.fig in the
folder named above. Note, however, that the unit numbers displayed in this xfig file
don’t necessarily correspond to those used during the simulation run, since the actual
unit numbers are always set by cnv.exe. The file ./cnv/sim_new.fig, which is created
by cnv.exe is a copy of the original system, but with actual unit numbers.

In order to halt the simulation, type Ctrl s in the window where the process sim
was started. With Ctrl q, the execution continues. Ctrl C terminates the program
run.

The executable program sim can also be started in the background with nohup
sim_copy &, where sim_copy is a copy of sim, since then another simulation can run
simultaneously. However, the two processes shouldn’t write to the same output files,
i.e. not the same printers (there are printer 0..9) should be used in the systems.

11
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Designing a new systelll

4.1 Introduction

the left menu panel of xfig. Choosing this button makes little boxes appear
everywhere in the picture, marking the corner points of the individual graphical
objects. To grep the storage, click on one of the two lowest little boxes in the
middle of the canvas with the RIGHT mouse button. The storage vanishes and
the info_edit window appears directly.

If you dontt have the ColSim-customized version but only the normal xfig:

(a) Choose the Copy button in the left panel of the xfig window, the with the
right mouse button onto one of the storagets corner points. If you were
successful, the text line right under the top panel confirms that the object
was copied to a scrapfile called .xfig in the home directory.

(b) select info _edit in the ColSim menu which makes the info_edit window
appear.

3. The info_edit window, shown in Fig.4.1 with a pumpts parameters, displays the

The xfig graphics of a system serves as the input file for the simulation. Herein, all
information about the implemented units, their interconnections, their parameters and
their output variables is contained. With the help of an example system, the necessary
xfig commands to design a new ColSim system are explained in the following!.

In the first subsection , the most easy modification of a system is demonstrated,
namely to modify a unit’s parameters. In the second subsection , we demonstrate
how to construct a new ColSim system from scratch, i.e. putting together the units,
defining the right interconnections, editing the load profile, etc.

In order to exercise these steps immediately, a new system will be created in order
not to modify the reference systems. The following commands should be executed now:

e Change into the folder ./projects and copy the demonstration system Demo onto
the new system Example with the command: cp -r Demo Example.

e Change into the new subdirectory Example and rename the following files: mv

Demo.cfg Example.cfg, mv Demo.fig Example.fig, mv load.Demo.dat load.Example.dat.

4.2 [Editing parameters
4.2.1 With the ColSim Menu

1. Type ColSim Example in the ColSim directory, then choose

xfig in the ColSim
menu (if nothing else is specified, always the left mouse button is meant). By

this, an xfig window is opened, showing the actual system Example.

2. The most comfortable way to edit the parameters is with the ColSim-customized
xfig program which is recognized by a button which reads Update ColSim in

'For a general introduction into the Public Domain program xfig, please use the help function of
this program.
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part of the information about a unit which is contained but not visible in the xfig
graphics of the system:

e At the top of the info_edit window, the unit number and the type number

of the object copied to the buffer are displayed. The unit number serves to
identify the unit in the system and helps to divide several units of the same
type, whereas the type number is needed to find the right source code file
describing the unit, e.g. pipe.c for the pipe. The type number appears in
the upper comment part of the source code files, see section 6.2 for details.

Then, the parameter values of the unit are listed, together with their physical
units and a short explanation. A more detailed explanation can be found in
chapter 5. Here, the parameters of the unit can be edited.

By choosing entries in the top panel of the info_edit window, the input
inital values can be shown. In section 3.1, it was explained that via the
lines in the xfig graphics of a system, connections are established between
the outlet of one unit and the inlet of another unit. However, if an inlet is
not connected and consequently receives no values from another unit, the
input inital value given here is used instead. Also at the beginning of the
simulation, the inital values are used for all inlets where no actual input
values are accessible because the connected unit wasn’t called yet.

In the same way, the output variables can be listed. Here, only the comments
can be modified. Note that it is advantageous to insert comments, since they
are printed in the gnuplot legends.

Finally, the inital elements of the array deriv_o can be listed.This array
contains the temperatures at each node of the unit, if it is divided into
nodes for the calculation like e.g. the storage (see section 6.4.2 for details).
Here, the inital temperature at each node can be adjusted. Note, that
sometimes these values are corrected by the program if the values dontt
seem reasonable (e.g. if they are 0).

13
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Figure 4.1: The info_edit window, showing the pump’s parameters.

4. Edit the values and leave the info_edit window with Save and Exit.

5. If using the customized xfig, the unit is put back in place in the xfig graphics
automatically. With the normal xfig, you have to first delete the old unit with the
Delete button (left mouse button), then insert the edited unit with the Paste
function (in the Edit menu). Using the right mouse button for the Paste function
makes the unit find its old place on its own, with the left button you have to
steer it. Make sure that the inlet and outlet connections to the other units fit,
otherwise use the Move function to adjust the position.

6. When finished editing parameters,choose Save in the File menu of xfig. Try the
new configuration by activating fig2dek in the ColSim menu and sim afterwards.
If error messages appear, probably the unit wasn’t placed right and some lines
don’t reach their in-or outlet boxes anymore. Try the Move function again, or
use the error message explanation given in section 4.3.4.

A faster way to edit the parameters of a unit without the customized ColSim xfig is to
use the Delete function with the right mouse button. function in step 2 a), instead
of the Copy function. However, if the xfig grafic is somewhat more crowded than our
example here, make sure that you dontt accidentally delete the lines instead of the
unit. If succesful, the unit is deleted from the grafic, but stored in .xfig again. After
editing it with info_edit, it can be pasted back directly into the grafic.

A useful feature is the Sort .xfig function of the ColSim menu. It can be used
to acualize the comments to parameters, in-and outlets which appear in the info_ edit
window by rereading them from the source code file belonging to the unit under con-
sideration. To use it, the unit must be in the scrap file .xfig (use the Copy or Delete
function of xfig with the right mouse button). Then select Sort .xfig and open the
info_edit window to check for changes. Sometimes the number and meaning of pa-
rameters change in the course of improving ColSim.
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4.2.2 Without the ColSim Menu
1. Start xfig in the ColSim directory by typing xfig &.

2. Select File in the top panel of the xfig window and load the file Example.fig from
the directory ./projects/Example.

3. With the Copy button in the left panel copy the storage into the scrapfile .xfig
like in step 2a) of the paragraph above.

4. Now use an editor to look at .xfig in the ColSim directory (during the installation
of ColSim, a link was set from .xfig in the home directory to the ColSim directory.)
After some data concerning the graphics, a block with readable text appears:
First, the type number of the unit is given. Then, the parameters follow, after
the big letters PAR. Then the input inital values, following the letters INP, after
them the output variables and finally the node temperature inital values after
the letters DERIV. See the paragraph above about the menu based parameter
editing for a more detailed explanation.

5. Edit the values, save the file and leave the editor. Proceed according to step 5 of
the previous paragraph.

6. To try the new configuration, the xfig graphics must be converted into a dek file
and the simulation started according to the instructions given in section 3.2.2.

See the comment at the end of the previous subsection for the features of the Delete
function of xfig. Instead of the Sort .xfig button, the shell script xfig.ssc in ./etc
can be used.

4.3 Construction of a new system

4.3.1 Putting together the units

In the following, there won’t be individual instructions for menu based and manual
operation, since all necessary commands were explained already for both approaches.

First, load Example.fig into a xfig window, adjust the scale with the Zoom function
(lowest button in the left panel) to find a convenient scale and delete all units, lines
and text, except for the unit sim control. This unit is needed in every system, since
it sets beginning and end of the simulation, see section 5.5.1.

In the following, a simple system with two hydraulic cycles including a solar collector
will be constructed as an example. The units needed will be taken from the library in
the folder ./cnv/1ib, which contains the graphical representations of all units belonging
to the SchichtSpeicherSystem, our reference system for the fluid systems. If this library
is not available or not complete in your ColSim version, simply copy the units directly
from SchichtSpeicherSystem.fig in the folder ./projects/SchichtSpeicherSystem. Of
course, the chosen units can also be copied from other xfig system graphics if present,

15



like e.g. StandardKollektorAnlage.figin ./projects/StandardKollektorAnlage. Note,
however, that the parameter settings have to be checked more carefully when combining
units from completely different systems: E.g. the heat capacities of the fluids must
be chosen uniformly for all units passed by the same fluid. Otherwise, the simulation
results will be peculiar, though no explicit error will be reported.

Note that if a clear orientation of the units is wanted, the Grid mode of xfig is
helpful (button in the bottom panel).

1. Open a second xfig window and load the file collector.fig from the library and
copy and paste it into the first xfig window.

2. Do the same with the following units: The units: weather, storage, heat_exchanger,
two pipes and two pumps, preferably one from the solar cycle and one from the
heatexchanger-storage cycle. Of course, the graphical appearance and the type
number of the two pumps are identical, but their (in the graphics not visible)
parameters are different. For convenience, those units are selected with suitable
parameters for the actual purpose.

3. Place the unit weather in the upper left corner, e.g. below the unit sim control.

4. Place the collector next to the unit weather, then arrange the two pipes in such
a way that they can be easily connected with the collector’s OUT1 and INP1.
In the follwing, we address output boxes of the xfig graphics as OUT and input
boxes as INP.

5. Place the pump taken from the solar cycle and the heatexchanger next to the
other ends of the pipes.

4.3.2 Hydraulic connections

Now the hydraulic cycle will be established by connecting the mass- and heatflow
ports of all hydraulic units with lines. Originally, mass- and heatflow had separate
ports in the graphic, since they are balanced separately by the program also. However,
since mass- and heatflow always come together, it is now sufficient to connect only
the heatflow port (always the small odd numbers), whereas the corresponding mass
flow ports (always the small even numbers) are connected automatically during the
conversion of the system graphics to the dek file.

To draw the connecting lines, select the zigzag line symbol from xfig’s left panel
(the comment POLYLINE drawing appears at the top left corner). Then, a color can
be selected with the button PenColor from the bottom panel. For best clarity of the
picture choose blue lines for cold water and red lines for hot water, line width 3, and
let the lines follow the grid lines with as few bending points as possible.

Note that the way the line takes is not important as long as it begins in an input box
and ends in an output box, or vice versa. Input boxes have an inwardly facing arrow
tip, output boxes an outwardly facing one. The exact placing of the lines is easier,
when the mode Point Posn is used in finest resolution (button in the bottom panel),
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then all bending points and endpoints fall onto a 1/2 mm grid. To choose beginning
and bending points of the line, use the left mouse button, to finish it use the middle
mouse button.

e Connect the following units with a red line, always going from OUT 1 to INP 1:
Collector - pipe_1 - heat_exchanger.

e Connect the following units with a blue line, also from OUT 1 to INP 1: Heat
exchanger -pump - pipe 3 - collector.

Now the second hydraulic cycle is established: Place the second pump and the storage
to the right of the heatexchanger and

e connect with a red line: OUT 3 of the heatexchanger with INP 1 of the pump,
OUT 1 of the pump with INP 1 of the storage.

e Connect with a blue line: OUT 1 of the storage with INP 3 of the heatexchanger.

Now the hydraulic connections are complete. It’s recommendable to adjust some pa-

rameters for a more interesting output: Set the simulation start in the unit simcontrol

to 940701 and the end e.g. to 94080 Adjust the storage’s start temperatures (the
DERIV values) to e.g.10 C.

4.3.3 Data and controller cables

Next, the data input units are connected. Here, it’s only the weather unit but mostly
there’s also a load_profile enabling user defined input for various units.. Use yellow
lines to

e connect OUT 4 of the weather unit - the global radiation onto a horizontal plance
- to INP 4 of the collector.

e Connect OUT 5 - the diffuse radiation to a horizontal plance - with INP 5 of the
collector.

e Connect the ambient temperature data on OUT 1 of the weather unit with the
collector (INP 3) and both pipes (also INP 3). These two pipes are considered
to be outside of the house or in unisolated parts of it, e.g. under the roof, since
their ambient temperature is the air temperature outside. In the reference system
SchichtSpeicherSystem, there are two more pipes, representing pipes inside the
house, which are at room temperature. There, INP 3 is not connected, but it’s
input inital value is set to 20 degrees.

The solar system still lacks a controller which decides when fluid should be pumped
through the collector and the heatexchanger to transfer solar heat to the storage. Copy
and paste the controller device, preferably that from the solar cycle, into the graphics
below the pumps. Use thin dashed black lines to
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connect the control signal at OUT 1 of the controller with INP 3 of both pumps.

Connect INP 1 of the controller with the absorber temperature at OUT 3 of the
collector.

Connect INP 2 of the controller with the storage temperature at temperature
sensor 2, i.e. storage’s OUT 12.

Connect INP 3 of the controller with the temperature at the storage’s top, OUT
1.

The controller compares the storage temperature with the collector temperature and
sends an on or off signal to the pumps. See section 5.5.2 for a detailed explanation of
the controller and its various modes.

Fig.4.3.3 shows how your system could look like now. In order to facilitate the
comparison of the lines, they were drawn next to each other here. However, more
complicated system graphics are better to survey when parallel lines of the same type
(e.g. controller connections) are drawn onto each other. In the xfig graphics you can
always use Move and afterwards Undo to distinguish the lines.

4.3.4 Error messages of fig2dek (cnv.exe)

After saving Example.fig, the conversion to a dek file can be started. However, when
trying to convert a newly drawn system, very often error messages like the following
appear:

® no input-box found for output_unit:[5,3] !!
no connection found for a line-symbol (return read_connections()=-1.

Here, a line beginning in unit 5, output number 3 does not end in an input box.

® no outputbox for a line-symbol found: !! (no double out_no’s!) current
line from [-4.6]1[3.0] to [22.4][1.5] cm
no connection found for a line-symbol (return read_connections()=-1

Here, a line was found which either meets no output box or no boxes at all. The line’s
coordinates (x,y) in cm in the xfig graphics are given.

When evaluating error messages, be aware that the unit numbers can change during
the conversion process, when a system with newly added or differently arranged units
is converted for the first time (see section 6.3). When working with the ColSim menu,
it is sufficient to close the old xfig window after the conversion process and reload it
by pressing the xfig button.

When working without the ColSim menu, the file ./cnv/sim_new.fig can be used
to identify the unit numbers corresponding to the error messages. Once the conversion
runs without errors?. this file should be copied onto the system xfig file in the projects
folder.

21f the conversion process breaks off due to severe error, some units may be missing in sim_new.fig.
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Figure 4.2: This is how your Example.fig should look like approximately.



4.3.5 Connecting plotting and printing devices

If the conversion process was successful, the simulation can be started. However, there
is no output yet informing about the proceedings in the system. For this purpose,
the plotting and printing devices were designed. Copy the gnuplotter and one of
the printers into Example.fig and connect the output variables of your choice to the
plotter’s and printer’s input boxes.

The gnuplotter:

Here’s a suggestion for the connection of the plotter:

1. Connect e.g. the temperatures of the collector’s absorber plate (OUT 3), of the
ambient (OUT 1 of weather) a%d e of thT \t/?rious temperature sensors of the
storage (OUT 11-14) to INP1." ot the gnuplotter.

2. Connect e.g. the control signal of the controller (OUT1) and the power of the
solar energy entering the storage (OUT20 of storage) to INP6, 7 of the gnuplotter.

3. Make sure that suitable scaling factors are chosen in the gnuplotter: For the
above choice of connections, all input inital values of the gnuplotter should be 0
except that of INP7: Set it to 1e-3. Set PAR6 (y-axis of second diagram) to 3.

After saving Example.fig, converting it with fig2dek or cnv.exe and starting the simu-
lation run, the two gnuplot windows should appear and show the connected quantities
as a function of time. If no such windows appear, make sure that PAR7 of the gnu-
plotter is set to 1. If no lines appear or some are missing, check the connections and
the scaling factors.

For each connected input, an entry appears in the upper right corner of one of the

gnuplot window and also the chosen scaling factor is displayed here.

The printer:

Connect some interesting output variables of various units to the printing device. De-
pending on what printer you copied into the drawing -printer 0,1 or 2 - the output file
will be sent to the files sim_out0.dat, sim_out1.dat or sim_out2.dat, all in the ColSim
directory.

Keep in mind that the printer is able to process the data it receives by summing it
up over a given time span, integrating it or finding out the mean value. These modes
can be set for each printer input individually with its input inital value. See section
5.5.6 for details.

4.3.6 Adding output boxes to units

Not all output variables of a unit appearing in the info_edit window or in the source
code of the type can be displayed in the system xfig picture. However, these boxes can
easily be added to the respective unit in the following way:
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. Open a second, empty xfig window by typing xfig. Use the Copy or Delete

functions with the right mouse button together with the Paste function to copy
the unit to be modified from the system graphics into the new xfig window.

. Use the Break Compound button approximately in the middle of the panel of

xfig. It’s the one where the explanation: Break compound object appears, when
the mouse pointer is placed inside the button. Then double click on one of the
little boxes marking the corners of the unit. Now the compound is opened, and
instead of one xfig object, the unit consists of many of them, all marked with
little boxes.

. Copy one of the output boxes to an empty place in the drawing. Open the

compound of the output box by repeating the steps listed above. Then use the
Delete function to delete the little number inside the copied output box.

. Activate the text mode by selection the big T in the left panel of xfig. Choose

text size 20 and text font Times-Bold from the lower panel. Then insert the new
output number into the copied output box. The insertion of text must be finished
by hitting the Return or Enter key.

. Put the output box and its number into a compound by using the Glue Com-

pound button next to the Break Compound button. The explanation Glue
objects into compound object must appear. Then use the MIDDLE mouse but-
ton two times to define a small rectangle enclosing the new output box. When
this operation was successful, the new compound object is surrounded by four
black little boxes. Now click on one of them with the right mouse button and
the box and the text are defined as a new compound object.

. Move the new output box to a suitable place inside the unit. If only the box

moves and the output number stays in its place, or vice versa, the building of the
compound object was not successful.

. Define the unit as a compound again in the same way as explained above. By

moving the object around afterwards, it can be tested whether all parts of it are
included in the compound. Take special care of the parameter block, which is
hidden, but can be detected by the symbols: <<>>.

. Copy and Paste the modified unit back into the system graphic. Now the new

output unit can be connected. If there are many error messages now during
the conversion process, probably the modified unit wasn’t defined as compound
properly. If there’s only one error message but the connecting line does meet
the new output box and some input box, you may have to repeat the complete
process. Probably something went wrong with defining the additional output box
as compound object and cnv.exe does not recognize it.
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4.4 Runtime errors

Missing line: If the conversion of the simulation script with fig2dek or cnv.exe was
successful, but after starting the simulation run a message like the following ap-
pears:
init_set_mp: no connection found, when searching a following unit to: [19][1]
([unit] [outputl),
you forgot a line connecting hydraulic unit 19 with its subsequent hydraulic unit.

This error was not detected during the conversion process since here it is only
checked for flawed connections, not for missing ones.

Incomplete conversion: If there were error messages during the conversion process
which you ignored, it also results in a runtime error like this.

Missing weather data: Another common runtime error is caused by missing weather
data in ./weather, then something like datafile ’weather/try07/910101.dat’

not found appears on the screen. Since the weather data is quite extensive,
not all TRY data bases (s€® section 5.5.5) are present in the standard ColSim

versions. Look in the folder ./weather and find out which data bases are available
in your version, then adapt the parameters in the weather unit and eventually
also in the sim control unit (the simulation time span must be covered by the
weather data).

Wrong time interval: If the message is time_intervall of ’load.dat’ is different
from parameterl of load_reader, the time span covered in load.dat (a link to
the load profile data file in the projects folder) differs from that given in PAR1
of the load profile unit.

Error message by unit: These error messages begin with the number of the unit
concerned and the name of the type. If you didntt edit the source code, the
error will mostly stem from the parameter settings. Use gqrt xfig to make sure

that you got the actual parameter comments and check whether the values are
reasonable. If this doesntt work, take a look at the source code of the type in
./src and find out under which condition the message is printed out. You can
activate the analytic mode by setting a=1 at the beginning of the code, or add
new print lines to check the variables concerned.

Note that the problem can also be caused by the previous unit which e.g. sends
absurd values for the heat flow. Some thermodynamical functions used here (see
section 5.6.4) use fit formulas which are only reliable for temperatures above 0 C
and which cause funny results at e.g. -50 C. Then, a negative relative humidity
may be calculated from this which causes an error in the unit sending the message.

Error message by main: Such a message may begin like: System-Energy-Check:
abs. Error: 12345 [Ws], script file: ’ more error_script ’ In ColSim,
a complete energy balance is performed at each time step, which is a huge advan-
tage because many errors are detected by this. If the energy balance is incorrect,
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i.e. if the energy stored momentarily in the total system minus that at simulation
start differs from the total of all gains minus the losses by more than a given max-
imal error (PAR5 of sim control), the simulation is stopped. An energy balance
of the individual units is performed to determine whether they had exchanged
energy in the current time step. These units, called active units, are listed with
their numbers and the “culprit” is most likely among them.

If you didntt modify the source code, you probably forgot or deleted a necessary
connection or forgot to set necessary parameters.® First, check for warnings you
may have overlooked: Restart the simulation by typing sim > dummyfile (some
new filename) in the ColSim directory. Then all runtime messages can be checked
unhurriedly by looking at dummyfile with an editor or the commands less or more.
Also take a look at the file error_script in the ColSim directory.

30f course itfs the job of the ColSim programmers to prevent flawed parameter and line settings
which cause such a crash. Please contact one of them, e.g. via the ColSim homepage www.colsim.de
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Gapter 5
The ColSim types

5.1 General remarks

In the following all available types, i.e. system components like pipes, pumps, storages,
controller, collectors, walls, heaters, etc. are discussed in detail. People who are not
interested in the physics and the modeling of a type may only read the first part of each
section concerning the operation of the type, i.e. how it is integrated into the system
and how its parameters should be set. However, only those parameters are discussed
that are not sufficiently explained in the source code comments (readable with the help
of the info-edit panel).

Also for the in-and outputs, this source of information should be used primarily. If
the meaning of an in-or output cannot be resolved from the comments, one should take
a look at the source code describing the type under consideration (all source codes
or links to the source codes are in ./src) and search for the part where calculated
quantities are assigned to the in-or output.

You’ll find that not all in-and outputs which appear in the info-edit panel are visible
in the xfig picture of the unit. There are two possible explanations why an existing
in-or output is not shown there:

e Itts not interesting. E.g. if INP n is a heat flow inlet we know that INP n+1 must
be the corresponding mass flow inlet, which will be automatically supplemented
during the conversion of the xfig system graphics to the dek file.

e There are too many of them. To reduce the complexity of the graohics, not all
existing outputs informing about the current state of some system variable are
represented by the corresponding numerated output boxes in the xfig-picture of
the unit. See section 4.3.6 for instructions about how to add the extra in-or
output boxes you need to the xfig picture.

Note that OUT 6,7 and 8 are always reserved for the unit’s gains, its losses and its
internal energy, respectively.

In the simulation, time is discretized into small steps of size h. Therefore, the fluid
moving through the hydraulic units is also discretized into so-called plugs: The mass
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of one plug is mp - h, where mp is the mass flow of the fluid, here in kg/s, and h is the
simulation time step in seconds. So one plug is the fluid amount which is passed from
one hydraulic unit to the next during one timestep h. However, at the inlet ports of
the unit, not the mass of the plug arriving is given but the current mass flow in kg/s,
which is internally multiplied with h.

On the contrary, the heat flow arriving at the inlet ports of a unit is already multi-
plied with h and given in J=Ws, i.e. it’s really an amount of energy AQ. Nevertheless,
we address both quantities as "mass flow” and "heat flow”, respectively.

5.2 Fluid types

5.2.1 Pipe

Operation The fluid pipes are used to simulate the transport of fluid between two
other hydraulic units in a more realistic way than it would be if the units’ mass flow
in-and outlets were simply connected by lines. The heat loss to the ambient can be
modeled and, with pipe3.c, also the "deadtime”: If there is more than one node, the
fluid entering the pipe in one time step is not the same which leaves the pipe in the
same time step. This effect reduces the efficiency e.g. of solar collectors, since every
time the solar pump stops, hot fluid is left in the pipes and looses its energy to the
ambient instead of transfering it into the storage. The controlling mechanism should
take this effect into account in order to maximize the efficiency.

Modeling There are two models for the pipe, the corresponding source code files
are called pipel.c and pipe3.c. Pipel.c is a simple node model without an exact
representation of the deadtime: In each timestep, the incoming fluid plug is mixed
with the fluid of the first node. From this mixture, a new plug is taken and mixed
with the fluid of the second node, etc. From the last node, the outgoing plug is taken.
The losses to the ambient are calculated for each node while the plug is present. The
temperatures of all nodes are stored in the deriv-arrays.

The alternative model, pipe3.c, is based on the opposite view: The incoming plug
presses the fluid in the pipe forward without mixing with it. From the end of the pipe,
the outgoing plug is taken. Then, the losses to the ambient are calculated for each node.
Since after each time step, only the node temperatures are stored, there is an effective
mixing within the volume of one node. Therefore, the form of the deadtime curve
(temperature of outgoing plug as a function of time, after a jump in the temperature
of the incoming fluid) can be varied from a step function form for infinite number of
nodes to a smooth increase for only few nodes. Mostly, 5-10 nodes will be used. The
deadtime itself is independent of the number of nodes and corresponds to the travel
time of the plug through the pipe.

Both pipe models employ an Euler stabilization for the losses to the ambient: If
due to the linearization of the actually exponential function (heat loss as a function of
time) cooling below the ambient temperature level occurs, e.g. for large time steps h
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or large values of kA, the losses to the ambient are limited in such a way that exactly
the ambient temperature is reached by the node under consideration. Therefore, the
calculation is stable for all timesteps and heat transfer coefficients kA /1.
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5.2.2 Diverter

The diverter' models the branching of a pipe (a T-piece) by splitting the mass (and
heat) flow into branch 0 and branch 1 (see fig.5.2.2). At the current time, this is the
only mode of operation, so PAR1 must be set to 1. How the fluid is distributed to
the two branches is defined by the control signal ctr = 0..1 from INP3: The flow
in branch 0 and branch 1 equals the incoming flow, multiplied with ctr and (1 -
ctr) ,respectively.

Since at the current time, there is no hydrodynamical calculation done for the fluid
flow in the tubes, the flowdiverter is a very simple component part. Note that every
diverter must be matched by a mixer 5.2.3 reunifying the mass flow.

5.2.3 Mixer

The mixer models a T-piece unifying and mixing the mass flow of two branches (branch
0 and branch 1), which were separated by a preceding diverter. At the current time,
this is the only mode of operation, so PAR1 must be set to 1. OUT3 informs about the

n older ColSim versions, the source code was called flow_div.c
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contribution from the indiviudual branches: Its signal is calculated from 1 - mp0/ (mpO

+ mpl), where mp0O and mp1 are the incoming mass flows from branch 0 and 1.
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5.2.4 Pump

Operation

In every hydrodynamic cycle, there must be a pump to create mass flow. Since up
to now, there’s no hydrodynamical calculation of the fluid flow in ColSim, the pump

is modeled in a very simple way: PAR1 contaiip max, the maximal mass flow the
pump can maintain. PAR 5 sets the mode of operation; If the pump is run in mode 0,
it receives a control signal ctr=0..1 from INP3. The output mass flow is then given
by mp_max, multiplied by ctr. Alternatively, the pump can run in mode 1, where the
target mass flow is read directly off INP4. Mode 2 is a combination of these cases,
where INP4 is used if it is connected, and INP3 otherwise.

With PAR2, the heat capacity of the fluid passing the pump is set. Note that it
causes errors hard to detect when this heat capacity is not the same in all hydraulic
units in one cycle. E.g. in the SchichtSpeicherSystem, all units belonging to the solar
cycle, i.e. collector, pipes, solar pump and the hot side of the external heat exchanger,
have their heat capacity parameter set to 3.8 kJ/kgK, corresponding to a mix of water
and an anti-freeze agent. The hydraulic cycle containing the cold side of the external
heat exchanger, i.e. the storage and the pump inbetween them, as well as all other
hydraulic cycles in the system have their heat capacity parameter set to 4.19 kJ/kgK,
that of fresh water.

The pump’s electrical power consumption in primary energy units is calculated from
the given primary power consumption at maximal mass flow (PAR3) and a power law
whose exponent a is given in PAR4: P,= P,,0; - (Mp/Mppaz)®. In the ideal case and
for laminar flow, i.e. low mass flow of 25-100 kg/h, the exponent a is 2.

The pump’s thermal mass can be tuned with PAR7, see next section for details.

Modeling

In section 6.4.1, it is explained why in ColSim the simulation of each hydrodynamic
cycle starts and ends at a pump. Consequently, the pump units are called twice in every
time step: During the first call, the new mass flow for this timestep is calculated like
explained above. The new heat flow leaving the pump is calculated from the pump’s
heat capacity multiplied with its temperature.
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Actually, the pump’s heat capacity is not really a physical property of the pump
and its fluid content alone. Rather, it is meant to summarize system capacities not
considered yet (e.g. those of pipe walls, mixers, diverters, tabs, sockets, etc.). The
pump’s thermal mass is set by PAR7, which is then internally multiplied with the
fluid’s heat capacity (PAR2) to give the pump’s capacity. If PAR5=0, the pump’s
thermal mass is set to the maximum mass of one plug, i.e. MPyqy - h.

The pump’s temperature is taken from the array element deriv_o[unit] [1],which
was written during the second call of the pump in the previous timestep (see section
6.4.2 for an explanation on global fields like deriv_o, deriv_n, qp_sum etc.).

When mass and heat flow output values are calculated, the outgoing energy is added
to the array element qp_sum[unit] [1] [1], which summarizes the pump’s output of
energy.

In the second call of the pump in the same time step, it is checked whether the
incoming mass flow equals the outgoing mass flow like calculated during the first call.
If this is not the case, the simulation is stopped. Furthermore it is checked whether
vanishing outgoing mass flow is combined with non-vanishing incoming heat flow or
vice versa.

The incoming heat flow is added to the array element qp_sum[unit] [1] [2], which
summarizes the pump’s energy input. Then, the new pump temperature is calculated
from the pump’s initial energy minus the summarized output plus the summarized
input, everything divided by the pump’s heat capacity.

The source code for the pump described above is pump.dynamic.c. There is a non-
standard alternative, pump.static.c in ./src/more_types, which works without a heat
capacity for the pump. In principle, this pump model leads to the same results for a
longterm simulation as pump.dynamic.c with PAR7=0 ( minimal thermal mass). How-
ever, the dynamical pump is preferable to the static one since the latter tends to
accumulate small unwanted and unphysical energy gains which result from differences
in energy in-and outflow due to the finite timestep h.

UNIT: 25
INFO: PUMP
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5.2.5 Solar collector

Operation: The solar collector model absorbs solar radiation and transfers the en-
ergy to a fluid cycle. Apart from the collector’s geometrical properties, it is specified
by:

e the collector efficiency factor F', which is the ratio of two heat transfer coefficients,
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namely that from the fluid to the ambient air and that from the absorber plate
to the ambient air.

e the average transmittance-absorptance product ’I']()_:(Ta)‘w ; which i.s (?eﬁned as
the ratio of the absorbed solar radiation to the incident solar radiation. The

name of this quantity results from the fact, that is is some functional of the
transmittance of the absorber’s glass cover 7 and the absorptance of the absorber
plate or tube «. In first order it is indeed the product of a and 7 , but due to
the effects of multiple reflections, wave lenght dependence and the fact that the
back reflection of the absorber is diffus, there are corrections.

e the collector overall heat loss coefficient k[W/m2?K], which summarizes the heat
losses to the ambient.

e the total heat capacity of the collector per squaremeter (including fluid), given
in PAR12.

In the collector’s parameter list, the product of F’and 7y for beam radiation of per-
pendicular incidence must be given in PAR2. For flat plate collectors, this product is
multiplied internally with a function f(1), describing the angular depencence on the
incident angle (see section “Modeling” for details). In PAR14, the parameter b0 for
this function must be given, e.g. -0.12 for a collector with two glass covers.

For a CPC collector, PAR14 must be set to -1, and a table called iam_table.dat
must be present in ./iam, giving the angular dependence as a function of two incident
angles, since the CPC has no rotational symmetry. See section 5.6.3 for details.

In PARS3, the product of F’ and ng 4 for diffuse incident radiation should be given.
It is smaller than that for the beam radiation, since it is already multiplied with the
angular dependance and integrated over all incident angles.

With PAR4=Fk, and PAR5=F,, the product of k£ and F' is specified, where the
Ansatz k -F' = ko + k1 - AT is used, i.e. the product k- F’ is assumed to depend on
the temperature difference between fluid and ambient.

In PAR?7, the specific heat capacity of the collector fluid should be given. Note that
the same value must be used for all hydraulic units in the collector cycle.

If PARI1S5 is set to 1, the file . /horizon/horizon_table.dat is read which contains
information about shading objects which reduce the horizon (see section 5.6.2).

The collector must be connected to a weather unit (see section 5.5.5): From INP4
the global irradiance on a horizontal plane (Igh) is read in, from INP5, the diffuse
irradiance on a horizontal plane (Idh). From INP3, the ambient temperature is read.

Modeling:

The standard ColSim collector model is an 1 x n-type model, which means that n nodes
are used in the flow direction and 1 node in the vertical direction. So, the absorber
plate and the fluid are treated as one capacity, and the internal heat transfer between
them is not modeled. There is also a 2 x n-collector model, where absorber and fluid
have different capacities, but stability problems can occur in certain circumstances.
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The collector consists of an absorber and a fluid pipe in thermal contact with the
absorber. Along the pipe, the collector is divided into n nodes. Just like in the pipe
model described in section 5.2.1, in each time step a fluid plug enters the collector pipe.
In a loop over all nodes, the energy balance for each node is performed and the new
node temperature is calculated. At last, the outgoing plug is calculated. However, in
difference to the normal pipe model, the collector pipe receives also energy from the
absorber plate. The energy difference between solar gains and losses to the ambient
per node for one time step h are described by the following formula (see [1],p.271):

AQ = A/n ' (F' *To - f(19, 99) - Tyeam + F Nodiff * Idiff —k-F- (Ti - Thmbiem)) - h,

where A is the absorber area, n the number of nodes and 7; the current temperature
of node i. The beam and diffuse solar irradiance Jpeqy, and Iy ¢ onto the collector which
its slope and orientation as given in PAR8 and PARY, are calculated by the radiation
processor rad_processor.c (see section 5.6.1 for details). The function horizon.c is
called afterwards to check whether the direct sun is shaded by something, e.g. the roof
of a neighboring house (see section 5.6.2 for details.) Then, the function f(¥,¢) for
the angular dependent transmission is calculated with the help of inc_angl_mod.c, see
section 5.6.3for details).

There are two standard collector models, collectorixn.c and collector.pipe3.c
which are based upon the pipe models pipel.c and pipe3.c, resepctively. Apart from
this, they are equal.

5.2.6 Heat exchanger
Operation:

The heat exchanger is a device inside of which heat is exchanged between two streaming
fluids. Consequently. it possesses two mass flow inlets and two outlets. Up to now,
the heat exchanger type can only model a counterflow heat exchanger, therefore PAR1
must be set to 1. With PAR2 and PAR3, the specific heat capacities of the fluids on
the hot and the cold side can be given, respectively. E.g. if water with an anti-freeze
agent is used on the hot side, the value could be something like 3.8 kJ /kgK, whereas on
the cold side there will mostly be simple water with a value of 4.19 kJ /kgK. In PAR4,
the overall heat transfer coefficient-area product in W/K must be given.

Modeling:

Our standard type is the static heat exchanger heatexchanger.static.c. Here, only
the capacities of the passing fluids are regarded, and the heat exchanger itself neither
has a heat capacity nor an internal volume. Consequently, no losses to the ambient are
calculable. There is also a dynamical model, heatexchanger.dyn.c,but is hasntt been
in use recently.

The modeling is based upon the schematic adiabatic counterflow exchanger de-
scribed in [1], p.178f. The kA-value given in PAR4 equals the theoretical heat exchange
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per temperature difference for two fluids with infinite heat capacity. Since in reality,
the fluids heat capacities are finite and therefore their temperatures change during the
heat exchanging process, the exchanged heat is smaller than this. However, from the
kA-value, the effectiveness of the heat exchanger can be calculated, which is defined as
the ratio of the actual heat exchange that occurs to the maximum possible one.

5.2.7 Storage
Operation:

General remarks: The storage is a central module of a fluid system, since it
is connected to all hydraulic cycles. There is only one standard storage type and all
varieties like storages with or without internal heat exchangers or with stratifiying
tubes can be modeled with the corresponding parameter settings. However, for better
survey different xfig pictures can be used which remind of the storage specifications:
The left side of fig.5.2.7 e.g. shows a picture of a storage with internal solar heat
exchanger, the right side of fig.5.2.7 shows one without internal heat exchangers, but
with a stratifying tube.?

The storagets heat loss coefficient to the ambient is given in PAR1, its volume in
PAR2 and the specific heat capacity of the fluid stored in it in PAR3.

In-and outlets: At the bottom of each storage in fig.5.2.7, the in-and outlet for
the solar cycle are drawn (INP1 and OUT1). At the storagets left side, the in-and
outlet for the heater cycle can be found (INP5 and OUT9). The cold water inlet
INP3 is at the right side at the bottom, and the hot water leaves the storage through
OUTS3, drawn at their top. It’s also possible to connect a circulation or heating cycle
(INP7, OUT17), though the in-and outlet boxes are not drawn in this picture. They
can simply be added to the xfig-picture (see section 4.3.6). Of course the position of
the individual in-and outlet boxes in the xfig-pictures does not matter, they can be
arranged completely differently for another storage model.

The height where in-and outlets are attached to the storage can be varied by editing
the storage’s parameters, e.g. PAR5 and PARG6 give the positions of the ports for the
heater cycle, PAR11 and PAR12 for the solar cycle . Since the storage is modeled as a
chain of n nodes (where n is given in PAR4), the positions are a number between 1 and
n, where node 1 refers to the top of the storage, node n to the bottom of the storage.

Also the heat capacities of the fluid entering through the inlets must be adjusted,
using PAR7 and PAR13.

2In the stratifying mode, the incoming warm water is fed into a node of the storage where the water
is just somewhat cooler. So convection and entropy creation are inhibited. In reality, this stratification
is achieved by a tube with shutters which open only when the water in the tube has almost the same
temperature as the surrounding water.When the warm water enters the tube at the bottom of the
storage, it rises inside it (due to its increased temperature with respect to the surrounding water in
the storage, its density it lower, which leads to thermal buoyancy) and leaves it just in the right layer
of the storage.
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Figure 5.2: Left side: Simple solar storage. Right side: Stratifying solar storage.

Mode of heat conversion: The different pictures in fig.5.2.7 are only used for
better orientation. Whether the storage works with or without internal heat exchangers
is solely decided by PAR22:

e If PAR22 is set to 0, the storage has two internal heat exchangers, called HE1
and HE2, which are used for the auxiliary heater cycle and the solar cycle. In
this mode, PAR8,9,10 as well as PAR14,15,16 must be set since they specify the
physical properties of both internal heat exchangers.

e If PAR22 =2, there is only the heat exchanger for the solar cycle (like in the left
picture of fig. 5.2.7). PATR14,15,16 must be set.

e If PAR22=1, there is no internal heat exchanger and the water arriving at the
inlets of HE1 and HE2 enters the storage directly. However, for the reasons
mentioned above, the in-and outlet positions of HE1 and HE2, as well as the
heat capacities of HE1 and HE2 have to be set nevertheless.

Note that if the mode of operation is changed, sometimes the heat capacities of HE1
and HE2 have to be adapted. E.g. if the storage is run in mode 2 and an anti-
freeze agent is used inside the collector, the heat capacity for HE2 (PAR13) must be
something like 3.8 W /kgK. When the mode is changed from 2 to 1, i.e. the internal
heat exchanger for the solar cycle is turned off, an external heat exchanger must be
used in order to avoid the mixing of the fresh water in the storage with the anti-freeze
agent from the collector. Then, the storage is not connected directly to the solar cycle
anymore, but via the external heat exchanger-cycle, where fresh water is circulating.
Consequently, the heat capacity of the water entering the storage must be set to 4.19
kJ/kgK, the value for fresh water without glycol.
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Mode of operation The generic storage device can be tuned to simulate two
different kinds of storages, namely a normal storage and a stratifiying storage, which
differ in the way the incoming warm water from the solar cycle is filled in.

e For PAR28=0, the storage is run in the normal mode.

e For PAR28=1, the storage is run in the stratifying mode, symbolized in the
right picture of fig.5.2.7. The presence of a stratifying tube is assumed, which
guarantees that the hot water entering the storage is let out in a segment with
similar temperature. By this, convection is suppressed and the water in the
storage is stratified with temperatures rising from the bottom to the top. The
solar system works more efficiently since the solar (Vorlauf) temperature is always
kept low. Thermal losses of the storage to the ambient are smaller, since only the
water in the top region must be kept at high temperatures for immediate use.
Note that in this mode, PAR11 and PAR12 don’t have to be set, since the inlet
node for the solar cycle is adjusted automatically and the outlet node is always
set to n.

Modeling:

As mentioned above, the storage is modeled as a chain of n nodes, where n =10
normally. The nodes are characterized by their temperatures stored in the arrays
deriv_olunit|[i] and deriv_ n[unit|[i] (see section 6.4.2 for a general explanantion of the
global arrays), where unit is the unit number of the storage and i counts the nodes.
Since the storage is usually connected with several hydraulic cycles, it will be called
more than once within one timestep (see section 6.4.1 for information about the order
in which units are called). Only at the last call of each timestep, effects like convection,
heat conduction and thermal losses to the ambient are calculated:

Convection: Convection sets in if the temperature at node i+1 is higher than that
at node i. The physical picture is that bubbles of hot fluid start to rise inside the storage
due to their lower density with respect to the surrounding colder fluid. They don’t
stop until they reach a level where the surrounding fluid has the same temperature.
This convective process is modeled in the following way: If a non-vanishing convective
heat transfer coefficient kA_down_up (PAR25) is given, the energy transfered in one
timestep from the hotter node i+1 to the colder node i is given by the transfer coeflicient
multiplied by the temperature difference and the timestep h. If PAR25 is set to 0,
maximal mixing between the two nodes is assumed, i.e. the temperatures are equalized
in each time step.

Heat conduction: Heat conduction transfers energy from hotter nodes to colder
nodes, regardless of the direction. If a transfer coefficent for heat conduction is given
(PAR26, in W/K), the energy transfered between node i and node i+1 is calculated
from this coefficient multiplied by the temperature difference and the timestep. If
PAR26=0, a literature value of 0.598 W/Km for the heat conductability of water at 20
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C is used. This value is multiplied with the storage cross section area (calculated from
the storage volume, PARI, and its height, PAR27) and divided by the node thickness,
i.e. the storage height divided by the number of n. Note that the kA-value for the heat
conduction calculated in this way underestimates the real effect if the storage contains
internal heat exchangers!

Losses to the ambient: The storages’s energy losses to the ambient are summa-
rized in the heat transfer coefficient given in PAR1. If PAR27, the storage height, is set
to 0, the energy losses per node in one timestep are calculated from PAR1 divided by
the number of nodes, multiplied with the node’s temperature difference to the ambient
and the timestep h. For a non-vanishing value of the storage height, the losses of node
1 and node n at the storage’s top and bottom are increased by 10 %, whereas the losses
of the other nodes are reduced.

Energy transfer to storage with internal heat exchanger: Every time the
storage is called as a part of some hydraulic cycle, it is calculated how much energy
and/or water is fed into the storage by this cycle and how much is taken from it.

If there’s a heat exchanger connected to the hydrodynamic cycle under considera-
tion, the heat transfer from the fluid in the heat exchanger to the fluid in the storage
is modeled with an internal pipe model based upon pipel.c like described in section
5.2.1. The heat exchanger is regarded as a winded pipe through which the hot fluid
travels from the inlet to the outlet. The pipe has as many nodes as there are in the
storage between inlet and outlet. So when for each node the pipe’s heat losses to the
ambient are calculated, they represent the heat transfered to this specific node of the
storage by the heat exchanger.

If no or a vanishing heat transfer coefficient for the heat exchanger of the solar
cycle (HE2) is given, this coefficient is calculated from a fit function in case the heat
exchanger is needed. This fit function uses the values of the incoming fluid’s tempera-
ture, the node temperature at the inlet of HE2 and the mass flow through HE2. Note
that the fit functions coefficents are determined from a fit to a 15001 tank.

Without heat exchanger: If there’s no heat exchanger connected, the fluid
enters the storage at the node where the hydraulic cycle under consideration enters.
In every timestep one plug enters (one plug equals the amount mp-h, where mp is the
actual mass flow in kg/s and h is the timestep in s. See section 6.4 for details) and mixes
with the nodets fluid content. Then, another plug with the node’s old temperature is
sent from this node to the next neighboring node in the direction towards the outlet
of the cycle, and so on.

Energy balance At every call of the storage unit, an energy balance for each node
is performed. In order to reduce the accumulation of errors due to the limited machine
precision, the different energy gains and losses treated above are stored separately in
the field qp_ sum|unit][i][j], where unit is the unit number of the storage, i counts the
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nodes and j counts the different energies. The actual node temperature follows from
the node’s energy divided by the node’s heat capacity.Note that the energy balance for
the whole system is checked by the main program after each time step.

Alternative storage models The storage model described above corresponds to
the source code storage4.cin ./src/more_types. There is an older version, storage3.c,
where the energy transfer into the storage with heat exchangers is modeled with an
external call of pipe3.c.

5.2.8 Heater
Operation:

The heater or auxiliary heater is used to heat up fluids according to one of the following
modes which are chosen with PAR4:

Mode0: Here, a set temperature can be given in PAR2 for the fluid leaving the heater.
If there is mass flow and the control signal from INP 3 equals 1, the fluid is heated
up exactly to this set temperature, given that the heating power needed does not
exeed the maximum heating rate given in PAR1. This mode can also be used for
cooling.

Model: In this mode, the set temperature can be variable or fixed: Ist is read off
INP3. The heating power is limited to the maximum heating rate from PARI,
but there is also a lower limit given with PARG6. If the heating rate necessary to
reach the set temperature is smaller than the minimal rate, it is replaced by this
minimal rate. However, if the temperature of the outgoing fluid would exceed
the set temperature by a hysteresis term given by PAR2, the heater is turned off.
Cooling is not possible in this mode.

Mode2: Here, the set temperature is also read off INP3. If there is mass flow, the fluid
is heated up exactly to the set temperature. There is no limitation by minimal
or maximal heating rates in this mode. Cooling is possible.

Mode3: Here, the fluid is heated up with constant maximal power like given in PARI,
if there is mass flow and the control signal from INP3 is equal to 1.

Mode4: In this mode, the heating power which is applied to the fluid, if there is mass
flow, is read off INP3. PARI is used as limitation of the heating power.

With PAR3, the specific heat capacity of the fluid can be chosen. With PARS5, it can
be chosen whether the transformation of primary energy into heating energy is ideal,
i.e. one-to-one (PAR5=1) or realistic (PAR5=2). In the latter case, the effectiveness
of the heater is calculated from a fit function valid for a condensing boiler, i.e. the
effectiveness can be greater than one, depending on the reflux temperature. Note that
the value of PAR5 only effects OUT9 and OUT10 which give the auxiliary power and
energy, used for heating up the fluid. In OUT4, always the heating power for ideal
heating is given.
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Modeling:

This type is modeled very simple, since it has no internal capacity except for the
fluidts capacity and consequently cannot represent heat losses to the ambient. A more
realistic model should include an internal capacity, since with a very heavy heater, the
system effectiveness can be lowered considerably if it starts up very often. Then, a
great portion of the heating energy is only used to heat up the heater which afterwards
looses its heat to the ambient in its inactive periods.

What the current heater model does is only to either add the set heating power to
the fluids energy and calculate its new temperature or to set the fluid’s temperature
according to PAR2 or INP3 and calculate the heating energy needed for this.

5.2.9 Heating

The heating type is currently subject to larger modifications.

5.3 Ventilation types

5.3.1 Pipe_air
Operation

Pipe_air is used to simulate the thermodynamics inside a ventilated room whose vol-
ume is given in PAR1. The room is filled with humid air and there are in-and outlets
for dry air, water steam, carbon dioxide, water and heat, where only the heat in-and
outlets are shown in the xfig pictures. All the others are connected automatically.
Pipe_air can be used in two ways:

1. Stand-alone within a ventilation cycle, e.g. together with a heater_air and a
pump_air. Again, there are two possible modes of operations:

e If PARS is set to 1, in PARI0 the total kA-value for heat losses of the air
inside the room to the ambient must be given. In this way, a simulation of
a simplified ventilated building can be performed.

o If PAR8=0, the room to be simulated must have the form of an air tube
whose properties are specified with PAR2,3 and 4. Then, the total kA-value
for the heat transfer from the streaming air inside the pipe to the ambient
is calculated. Note that in this mode also mass elements (see section 5.4.3)
can be connected to pipe_air at the temperature inputs INP6-INP9. In this
mode, pipe_air was used as an earth heat exchanger earlier.

2. The pipe_air unit is connected to an AirRad_node unit, i.e. INP14 is connected.
Then, PAR8 and PAR2,3,4 and PARIO are irrelevant, since the heat losses of the
air contained in pipe_air are calculated by AirRad_node. The AirRad_node unit
itself represents an air and radiation node of a building with 6-8 walls and must
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be connected to wall elements (s€€ Section 5.4.2 and 5.4.1). Tt balances the energy
exchange of the walls with the ambient and wall heatings and sends the energy
gained in each time step to the connected pipe_air unit. In turn, the pipe_air
unit calculates the new equilibrium state and sends the current room temperature
OUT16 back to AirRad_node. So when simulating a building, pipe_air is used
to calculate the thermodynamics of the air inside and the air exchange via the
ventilation, and AirRad_node balances the energies from the walls and windows.

If PARSG is set to 1, the adsorption of humidity by imaginary walls can be simulated
(this feature is independent of “real” walls connected to pipe_air via AirRad_node).
PARI11 sets the maximal amount of steam which can be adsorbed and PAR12 gives
the adsorption rate.

With PAR13 and PARI14, the inital humidity and CO, content of the air in the
room can be adjusted. The initial room temperature must be given in DERIV1, the
ambient temperature in INP6.

Of course, several pairs of pipe_air and AirRad_node units can be used to simulate
a building with more than one room, see section 5.4.2for details.

Pipe_air has several inlets: INP6 can be connected to a weather unit (see section
5.5.5) to get the ambient temperature, otherwise the inital value of INP6 will be used.
INP10,11,12 and 13 can be used to simulate the direct and indirect influence of people
in the building who add water steam and carbon dioxide to the air by their breathing,
bring in heat and turn on heat and water sources. If the inputs are not connected,
constant values can be given as input initial values, but mostly they will be connected to
a unit load_profile (see section 5.5.7), so a detailed profile of the occupantst behaviour
can be given.

Modeling

This module originates from an earth heat exchanger developped by Klaus Rittenhofer.
At this time, it was the equivalent to the fluid type pipe, except for the fact that not
only water and heat flow are balanced but also dry air, water steam and carbon dioxide.
Since water steam can change into water when the temperature drops, more sumptuous
calculations are necessary to determine the thermodynamical equilibrium than in a pure
fluid system. The thermodynamical routines used are collected in thermodynamics.c,
see section 5.6.4.

In contrast to the original earth heat exchanger, there is currently only one node in
pipe_air, i.e there are no gradients in steam-and COs-concentration and there is only
one temperature in the room. In a ventilation cycle, the mass stream of the dry air is
kept constant throughout the cycle, though the mass stream of water steam and carbon
dioxide may change. When a plug of dry air, steam and CO, arrives at the inlets of
pipe_ air®, the routine GetMixedOutPlug is called which mixes the incoming amount of
humid air with the resident air and calculates the new thermodynamical equilibrium

3The water in-and outlets are not in use yet in the ventilation types. If condensation occurs within
one unit, the water is balanced and stored within this unit.
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state. If condensation occurs, an iteration is necessary to determine the new amounts
of steam and water and the new temperature (see also section 5.6.4). The outgoing
plug is taken from the room volume.

5.3.2 Pump_ air
Operation

Pump_ air is essentially a ventilator, which creates a mass stream of dry air. In PARI,
the maximal mass stream mp_max is set in [kg/h]. PAR2 and PAR3 serve to calculate
the electrical power consumed by the ventilator. With PAR4, the mode of controlling
the pump can be selected: In mode 0, the control signal ctr=0..1 is read off INP6
and the current mass stream of dry air is given by ctr - mp_max. In mode 1, the
mass stream of dry air is read directly off INP7. With PAR7, the thermal mass of the
ventilator can be modeled, see next paragraph for details.

Modeling

Just like the pump in fluid systems, the pump_air unit of a ventilation cycle is called
twice in each time_step: Once as first unit of the cycle to set the mass stream for all
other units, and a second time after all other units to balance masses and energies sent
out and received back and calculate the new pump_air temperature.

In the first call, the outgoing mass stream of dry air is determined by the control
signals (INP6 or INP7), whereas the mass streams of steam and CO; follow from the
absolute humidity and the CO, -concentration inside the pump volume. This volume
is calculated from the capacity for dry air given in PAR7%. For the inital time step, a
steam content of the pump corresponding to a relative humidity of 50 % and a CO,
-concentration of 500 ppm is assumed. Afterwards, the steam and COs contents during
the first call are read from the old values of OUT24 and OUT22, where they were stored
during the second call of pump_air at the last time step. There is no water content
since the possibility of condensation within the pumpts volume is neglected.

The temperature of the outgoing plug is that of the air in the pump’s volume. It is
given by the old value of DERIV24, where it was stored during the second call of the
last time step.

In the second call of pump_air, its new temperature is calculated from the total
enthalpy contained in pump_air’s dry air and steam content and the outgoing and
incoming energy flow. The new temperature is stored in DERIV24. Also, the new
steam and CO, contents are calculated and stored in OUT24 and OUT22, respectively.

“Note that this capacity for dry air can be chosen considerably higher than the pumpfs volume
would allow, in order to make up for other system capacites which are not taken into account. On the
other hand, its minimal value is given by one plug of dry air. If PAR7 is smaller than this minimal
value, it is corrected automatically.
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5.3.3 Heater air
Operation

The heater_air is used primarily to heat up air, but can also be used to cool it down or
to change its humidity or carbon dioxide content. With PAR2, five modes of operation
can be chosen:

0. In this mode, there is no set temperature, but a certain heating power (INP8)
can be applied to the air passing through the heater_air. With PAR4, the air
temperature can be limited, mostly to 55 C, if the system is used to simulate a
building with air heating. The steam content of the air is left unchanged, but its
relative humidity may change of course.

1. Here, the air is warmed up or cooled down to a set temperature (INP6). Again, the
absolute humidity of the air is not changed.

2. In this modp, ouly theupRt DY, PhE R g according to value

sel

3. Here, the temperature and the relative humidity can be chosen (INP6,7).

4. In this mode, the temperature as well as the relative humidity and the carbon
dioxide volume concentration [ppm| 3% be chosen via INP6,7,9.

Note that in contrast to the heater for fluid systems, the heating power is not limited
here. However, a limitation can be set in the controller unit (see section 5.5.2). With
PARG it can be chosen whether the set humidity from INP7 is interpreted to be in the
range 0..100 (for PAR6=1) or 0..1 (other). The reason for this feature is that the heater
is often used to simulate the ambient: In ColSim, only closed hydraulic or ventilation
cycles are allowed, therefore the warm air leaving the building through the ventilation is
sent through a heater which impresses ambient temperature, ambient relative humidity
and ambient CO; content on it. For this prupose, INP6,7,9 of heater_air are directly
connected with the weather unit (see section 5.5.5), which retrieves its information
from a weather data base file. And in some of these data bases, relative humidity is
given from 0..1, in others in %.

Modeling

The heater air is essentially as simple as the heater in fluid systems, i.e. is has no
internal capacities and cannot simulate thermal inertia and energy losses to the am-
bient. However, since there are four mass flows (dry air, steam, water and CO,),
some thermodynamical calculations are necessary, using the functions contained in
thermodynamics.c.

If condensation occurs, the steam content of the outgoing air is limited correspond-
ing to 100 % relative humidity, and the spare water is stored in the heater. If water
must be evaporated to rise the humidity of the outgoing air, stored water is used if
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possible. Otherwise, water is added to the heater at ambient temperature if INP6 is
connected, assuming that the heater simulates the ambient. If INP6 is not connected,
a temperature of the added water of 10 C is assumed.

5.3.4 Heatexchanger air
Operation

The type heatexchanger_air is a very simple model of a mechanism to transfer heat
from warm air leaving a building to fresh air entering it, i.e. to simulate a heat recovery
device. At INP1, the heat flow of the incoming fresh air must be connected. OUT1
is the heat flow outlet of the warmed up fresh air, i.e. INP1 and OUT1 belong to the
“cold” side of the heat exchanger. However, the “hot” side is not modeled in detail, but
only the information about the temperature of the warm air from the building (INP6)
and relative humidity (INP7) is needed.

In PARI, the efficiency of the heat exchange must be given as a number between
0 and 1, e.g. 0.7 - 0.85. PAR2 must be set to 1, since at the current time only a
counterflow heat exchanger can be modeled.

With PAR3, a bypass temperature can be set: If the temperature of the warm room
air (INP6) used to heat up the fresh air is larger than PAR3, no heat transfer is made.
This feature is necessary if the buildingis getting too warm e.g. at sunny days.

With PAR4, the limiting ambient temperature can be given where the heating is
turned off. So if the temperature of the incoming fresh air exceeds PAR4, the heat
exchanger is bypassed also.

Modeling

The modeling is as simple as that of heatexchanger_static.c for the fluid systems
and based upon the same formula (see section 5.2.6). However, here the effectiveness
is given directly and has not to be calculated from the heat transfer coefficient-area
product like in heatexchanger.c. The device has no internal capacity and no heat losses
to the ambient. Effects of condensation are not taken into account yet.

5.3.5 Diverter _air

Diverter_air is used to divide a stream of air into two, according to a control signal
ctr received from INP6. The outgoing mass stream at branch 1 is ctr ‘mp_in, with
the incoming mass flow mp_in. Consequently, the outgoing mass stream at branch 2
is (1 —ctr)-mp_in. This is valid for dry air, steam, water as well as and CO,, and also
for the heat flow.

The parameters are only needed for the hydraulic calculation, which is not active
yet.
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5.3.6 Mixer air

The mixer_air is the counterpart of diverter_air: For every diverter, there has to be
a mixer reunifying the mass and energy flows. However, in mixer air there are more
calculations to be done, because of the possibility of condensation inside the mixer.
If the condensation point is approached, an internal iteration is performed in order
to determine the new thermodynamical equilibrium of the mixed state, i.e. the new
temperature and the masses of steam and water (compare section 5.3.1). The mixer
stores the condensed water and tries to evaporate it again in the next time step.

No parameters have to be set. Note that OUT9 gives ctr,,, the relative contribu-
tions of the two incoming branches to the outgoing mass flow: ctroy, = 1—mpsy/(mp; +
mpy), where mp; and mpsdenote the incoming mass flows.

5.4 Building types

5.4.1 Wall pcm

This type is subject to larger modifications at the current time.

5.4.2 AirRad Node

This type is subject to larger modifications at the current time.

5.4.3 Mass element
5.5 General types

5.5.1 Sim control

A sim control unit must be present in every system to be simultated, since it sets start
and end of simulation; In PARI, the start date must be given in the format yymmdd,
where yy is the year, mm the month and dd the day. Likewise, PAR2 denotes the last
day to be simulated. Note that these dates refer to the weather data base, i.e. in the
chosen data base (see section 5.5.5), the data files for this time span must be availlable.

Note that if the time span to be simulated crosses the turn of the year, the simulation
carries on with january, the first, etc., but the year is not increased by 1. This makes
sense, since the weather data bases mostly contain only data for one year. To simulate
e.g. a heating period, the combination of e.g. PAR1=911001 and PAR2=910430 is
possible.

With PAR3 and PAR4, the start time and end time can be set, respectively. The
format is hhmmss (hours, minutes and seconds).

With PARS, the maximal error in the system energy balance can be set.

PART gives the simulation time step h in seconds. Note that if it is chosen too
large, some units may report warnings refering to stability problems: Since in ColSim,
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the Euler method is applied in order to solve the differential equation set describing the
status of the system, the iteration is only stable if the physical time constants involved
are much larger than the simulation time step h. If this is not the case, warnings
or error messages are printed and the program execution may even be halted. Then,
PART should be reduced considerably in the next run. Therets no use in trying to keep
it as close to the instability limit as possible since then the simulation results will most
certainly depend upon the simulation time step which is unphysical.

If PAR8>0, the fast iteration mode is activated and PARS is interpreted as the
number of time steps which are skipped if possible. See section 6.4.2for details.

Note that the sim control type is not a real type in the sense that it is represented
by an own source code file, but it is part of the main program main.c: The main
program, knowing the type number of sim control, reads in its parameters and uses
them to control the simulation.

5.5.2 Controller

Controller units are used to trigger pumps, ventilators, diverters, heaters and heatings
in order to achieve e.g. a given set temperature in the storage or a certain air quality
and temperature in a building. Since ColSim was mainly developped to serve as a
simulation environment for developping and testing controlling algorithms, there are
many variants of the controller type:

The default controller for fluid systems is ./src/more_types/controller.c and it
can control the pump of the solar collector cycle or alternatively the mixer of a heating
cycle.

With PARI1, the mode is selected:

1. On&Off: At OUT1, a control signal for the pump in the solar cycle is sent. The
signal is either 0 or 1 ( i.e. the pump is turned off or on) and is calculated in
the following way: If the pump was off, and the collector temperature (INP1)
is larger than the storage temperature (INP2) plus a hysteresis term (PAR2),
the pump is switched on. If the pump was on and the collector temperature
(INP1) is smaller than the storage temperature (INP2) plus another hysteresis
term (PAR3), the pump is switched off. Also, if the temperature at the storagets
top (INP4) exceeds a given maximum (PART) or if the collector temperature
exceeds 110 C, the pump is turned off.

2. Unisol: This mode describes a special storage and is not for general use.

3. MatchedFlow: Like in model, a control signal for the pump in the solar cycle is
sent out at OUT1, but now it can be variable between 0 and 1.There are three
MatchedFlow modes:

(a) If PARS is larger than 20, it is interpreted as a set temperature for the col-

lector. Then, the controller tries to keep this collector temperature constant
if possible:
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If the pump was on and the collector temperature (INP1) is larger than the
storage temperature (INP2) plus a hysteresis term (PAR3), the new control
signal is calculated from a kl-controlling algorithm: ctr = kP - d1" + kI -
integryr , where the constants kP and kI are given by PAR4 and PARSG,
respectively. The term d7’ is the difference of the collector temperature and
the set temperature (PAR5). The term integryr is an integral of d1" over
all past time steps, with a limitation to 2000. Here, the pump is turned
off if the collector temperature (INP1) is lower than the storage tempera-
ture (INP2) plus a hysteresis term (PAR3).The control signal is limited to
a minimum value given by PARS.

If the pump was off and the collector temperatur is higher than the storage
temperature (INP2) plus a hysteresis term (PAR2), the pump is turned on
at minimal flow (PARS).

Else, the control signal is 0. The pump is also turned off if the tempera-
ture at the storage’s top (INP4) exceeds PAR7, additionally if the collector
exceeds that PAR7 by 30 C.

(b) If PARS is smaller than 20, it is interpreted as a set temperature difference
between the collector and the storage temperature. Then, the controller tries
to keep this temperature difference constant. So the term dT" (see case (a))
is calculated as collector temperature (INP1) minus storage temperature
(INP2) minus PAR5. Otherwise, the control signal is calculated just like in
case a).

(c) If PAR5=-1, everythingts just like in case a) or b), except that not the kI-
controlling algorithm is used to calculate the control signal, but the formula
ctr = (15 + 0.04 - Iy sitiea — 0.188-13,)@5 This fit formula is a result of

a static optimization of the mass flow as a function of the global irradi-
ance onto the collector plane and the temperature of the fluid entering the
collector, which is identified with the storagets temperature (INP2) here.

4. All other modes are for heating control, i.e. control values for the heating pump
and the mixer in the heating circuit are calculated. However, these modes haventt
been in use for quite a long time and need revision, therefore we skip them here.

There is another controller for ventilation and heating control in the folder ./projects/zonel.

It can control the ventilation by using the COyconcentration as indicator for the qual-
ity of the room air and also is able to control the temperatures of several rooms by
calculating a heating power, depending on the actual room temperatur in comparison
to the set temperature. Again, with PAR1, the mode is selected:

1. Ventilation and heating control: In this mode, a control signal 0..1 for the unit
pump_air (OUT1) and up to six heating powers (OUT9...0UT14) A6 Iculated,

. . ! are con-
eRea B SR BBy By hs AT B Se e St ENPAR 12 and PAR15-

PAR19). A kP-control (which is a kl-control with vanishing integral term, see
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explanation of kl-control in mode3a of default controller) is used for the venti-
lation, where the value for kP is given in PAR11, the set CO, value in PAR13
and the measured C'O, is read from INP7. If the C'O; is lower than a lower limit
given in PAR14, the control signal for the ventilation is set to 0. If PAR9=1, the
control signal stays constant, independent of the CO, value. This constant value
can be set in PAR10. For the heating, a kl-control is used, where the parameters
kP and kI must be given in PAR4 and PARG, respectively. PAR5 contains the
maximal total heating rate.

2. Fuzzy controller for ventilation and heating control: Here, a fuzzy algorithm is used
for the same tasks as in model. Note that to use this mode, the right fuzzy set-
tings (include files called settings_heat.h and settings_air.h) must be present
in ./projects/zonel. The same in-and outputs are used as in mode 1 and also
PAR5, PAR12 and PAR15-18 have the same meaning. With PAR3, a value be-
tween 0 and 1 can be selected for A, the fuzzy ventilation control parameter:
A=0 causes the maximal economic ventilation program with the lowest mean
ventilation rate and A=1 causes the maximal comfortable ventilation program
with the highest mean ventilation rate. With PAR4, the cooling mode can be
turned on, i.e. the ventilation is enhanced if the temperature specified by PAR6
exceeds PAR10. With PAR?7, the inertia of the heating control signal can be var-
ied (mostly set to something like 0.7 %). With PAR8 and PARY, the amount by
which the fuzzy sets for CO, and relative humidity are shifted for A<1 is specified.
The shifting is proportional to (1-A). PAR14 specifies the CO, concentration in
the ambient since only the difference of the measured CO, concentration in the
room to that in the ambient is used to calculated the ventilation signal. With
PAR2, the air heating mode can be turned on, which means that the ventilation
is enhanced if the room temperature does not reach the set value: Since with the
air heating, the air temperature is always limited to 50-55 C, the ventilation must
be sufficient to transport enough heating power into the room. If PAR2=1, INP1
is interpreted as the measured temperature and PAR12 as the set temperature
for the air heating.

5. This mode is the same as model but without the ventilation control.

7. This mode equals model again, but this time without the heating control.

5.5.3 Gnuplotter

With the help of the gnuplotter unit, the state of the system can be observed during a
simulation run. Any quantity which corresponds to an output box in the xfig-picture
of the simulation dek can be connected with one of the gnuplotter’s input boxes and
will be drawn then as a function of time during the simulation run. There are two
exceptions; the mass and heat flow outlets cannot be connected with the gnuplotter
(or printer), since this would be interpreted as mass and heat flow into the plotting
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devices and definitely cause severe damage... Sometimes, there are special outlet ports
where information about the current mass or heat flow can be obtained.

On the other hand, not only those quantities can be plotted which already have
visible output boxes in the xfig-picture, but all those which are listed as outputs in
the info-edit window of a unit (i.e. which appear in the comment part of the source
codes of the corresponding type). In section 4.3.6 it is explained how the output boxes
needed can be added to the xfig-picture.

The gnuplotter unit, using the Ppblic. Domai “Gnuplot”, draws two di-

0 Riing thoe §&Hﬁjéffdcftgolrglh(£e i o 1ofor INPURTE, lﬁaﬁjgef;&é% St
in the legends of the plot, together with the unit number and outbox number which is
plotted. In Plot 0, also the names of the plotted output quantities are printed in the
legends. This information is taken from the comments to the output variables of the
specific unit. These comments can be edited with the help of the

Note that IN 1..5 and INP6..10 must be connected subsequentg},f(s)inceedilgrvtvlli%ds% e
of speeging up the simulation, the program stops the output of data to the plot file
when it encounters an unconnected input.

With PAR2, the “refresh time interval” can be chosen: The plot is drawn completely
new after every refresh time interval. Since the simulation continues meanwhile, the
lines drawn become longer and longer after every interval up to the chosen maximal
time span (PAR1), where a new plot is started. In this way, it’s easier to follow the
progress of the simulation, compared to the alternative that the lines are drawn at
once for the whole maximal time span (PAR1=PAR2). However, the latter parameter
choice makes the simulation run considerably faster. The fasted run can be achieved
by turning off the gnuplot output completely by setting PAR7=0.

If PAR8=1, the plot ranges are chosen automatically and adapt themselves contin-
uously to the data. If PAR8=0, the ranges have to be set with PAR3..6. If PAR9=1,
the line “continue ?? no:echo n>no, yes:echo y>no, cancel:echo c>no” is plotted
for every day during the simulation run. Its meaning is that the simulation can be
terminated in a controlled way without the menu by typing echo n>no in a text win-
dow. By this, the letter n is written into the file no, which is checked by the main
program after each simulated day.

The plot file is called ,plot.dat”. It contains data from the current day, which can
also be plotted with an external call of gnuplot: After typing “gnuplot” in some text
window, type e.g. plot “‘plot.dat” using 1:2. This command plots the second col-
umn of the data file as a function of the first column. The command plot ‘“‘plot.dat”
using 1:3 with lines will plot the third column as a function of the first column,
with the data points interconnected by lines. For more information on gnuplot try the
online help by typing help.

45



INFO: GNUPLOTTER
%VAAY/* UNIT: 14
WINTAOR

5.5.4 Equation

The equation type can be used to apply an arbitrary formula to several input values
and receive the results as output values. However, for defining this formula, the source
code file equation.c has to be edited. The best approach is to copy the file from
./src/more_types into the folder of the current project. Then, in the .cfg-file of
the project, a link has to be set to this file, otherwise the original source code in

./src/more_types is read. See section 7.1 for details..

Now, the local file equation.c in the projects folder can be edited: It contains a
switch/case structure, where PARI is the switch used to decide which case is active.
Now either use an existing case and modifiy the commands there or insert a new case
between the last current case and the default case. If n is the number of the current

last eaghe new case has to look like this

case n+l:{variable definitions; commands; setting the OUT variables; break;}.

The input variables are in input[i], the parameters can be addressed by PAR (i)
and the output variables by OUT (i), where the latter two expressions are macros
defined in ./src/global.h.

PAR (1) must be set to the case number of the formula to be applied. The other
parameters can be used for defining the formula. If more INP or OUT boxes are needed
than there are in the xfig picture of the equation unit, simply add those you need by
following the instructions in section 4.3.6.

Note that after editing equation.c, you have to use the =~ make button in the ColSim

menu to activate the changes.

5.5.5 Weather

The weather unit reads data from the weather data in ./weather and sends it to its
OUT variables, where it can be used by other units which need information about the
solar irradiation, the ambient temperature and humidity, etc. However, note that in
principle all kind of data can be read by the weather unit, i.e. it may also be used as
a substitute for the load_profile unit e.g. if a different load profile should be defined

for every day of the year.

Currently, the weather unit expects to find subfolders in ./weather whose names
are composed of try and a two digit number, e.g. try05 or tryl4.> The number is

5Try is an abbreviation for “test reference year”. See ? for information about this weather data

base.
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specified in PAR5 of the weather unit. Inside these subfolders®, a weather data file for
each day of the year (or at least for all days which will be simulated) should be present,
and its name must look like 970220.dat, i.e. it contains the number of the year, the
month and the day.

Note that the original try data does not look like that, rather it is a single file for
all days of the year, containing a header with information about the location where the
data was recorded. Moreover, there are many more data columns than in the ColSim
try data files. The original files are useful for the information about the locations (see
explanations to PAR3 and PAR4). But if you only have these original files and no
data in the ColSim format like explained above, you can use the convertion programm
try_convert.awk (see comment part at the top of the file for how to use it). Normally,
it is contained in a try subfolder, otherwise contact your suppliers of ColSim.

In PARI1, the timezone (with respect to Greenwich, east positive) where the weather
data was measured should be given. E.g. Germany is east of Greenwich, therefore
PAR1=+1 hour. PAR2 contains the time difference between two lines of the data file.
In PARS3, the geographics length of the measurement place with respect to Greenwich
must be given, but here east is counted negative. The geographical latitude must be
given in PAR4.

With PARG, it is determined whether the data is interpolated or not. If PART is
set to 1, a warning is written if the time difference between one data line and the next
does not equal PAR2.

The OUT variables of the weather unit correspond to the data columns of the files
in the try subfolders, i.e. if the ambient temperature is the first column after the time
column, it can be read off OUT1 of the weather unit.

5.5.6 Printer

The printer unit writes the data it receives through its inputs to the file sim_outn.datin
the ColSim directory. The number n is given by PAR1 of the printer. PAR2 is only
read if PAR3=0, then it gives the print interval in seconds, i.e. the time difference
between two subsequent lines in the output data file. Normally PAR3 is used to define
the print interval and there are 8 possibilities to choose from.

With PAR4, the format of the time variable in the data files can be chosen: If
PAR4=1, the time is given with a twelve digit number, where year, month, day, hour,
minute and second are each represented with two digits. For PAR4=1,2,3/4 the time
is given in seconds, hours, days or minutes, respectively, where the counting always
starts at the beginning of the year.

If PAR5=0, the data is not modified, but if it is set to 1, it is divided by 1000 and
3600, which can be used to transform an energy output in J or Ws into kWh. However,
this mode is only active if the data is integrated or summed up. This can be achieved
by setting the input inital values:

%Note that the try-subfolders can also be links. A link can be defined with the help of the .cfg-
file of the project by making an entry e.g. for try05 instead of a type name. Note that the last entry
in the new line of the .cfg- file must be KERNEL then, not TYPE.
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If the input inital value of INP1 is 0, the variable connected to INP1 is averaged
over one print interval (and printed into the first column after the time variable). For
an inital value of 1, the momentary value at the time where the dataline is written is
used. For a value of 2, the variable is integrated over one print interval, for 3, it is
summed up over one print interval.

5.5.7 Load profile

Originally, the unit load profile was designed to model human behaviour concerning
the consumption of warm water. The unit reads a data file, load.SystemName.dat in
the folder ./projects/SystemName, which is linked to load.dat in the ColSim directory.
In this file, there is a entry for every change in the mass flow and the temperature of
the demanded warm water. like table 5.1 shows. The data read from the file is then
sent to the outlets of the load profile unit and hereby made available for other units,
e.g. the mass flow can be sent to a pump and the set temperature to a control unit
which controls a mixer mixing hot and cold water.

However, 1oad profile can be used in a much wider context now, namely to imprint
almost any input quantity onto the system. E.g. the reaction of hydraulic devices
like storage or pipes to sudden changes in the ambient temperature can be tested
by connecting the ambient temperature input not to the weather unit but to the load
profile, where a designed temperature course is read from a data file. Also, inhabitants
of a building can be simulated with the help of the load profile by making entries
for the water steam, CO, and heat emissions by the people, as well as the indirect
loads like steam production by plants and wet clothes and heat emissions by electrical
devices.

371404d Avol

In table 5.1, the structure for a simple version of the data file is shown. The
maximum number of columns after the time column is OUTMAXO0, a number globally
defined in the file ./src/global.h. The maximum number of lines is LOAD_SIZE,
also defined in ./src/global.h.” In the first line, the names of the quantities listed
below should be given (there must be as many words in the first line as data columns).
The second line stays empty. Beginning from the third line, the data entries follow.

"Note that to change these values, the file ./src/global.orig.h must be edited since global.h
is created anew during every configuration process. See section 6.2.
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Table 5.1: Simple data file for load profile.
time mp | Tset

000000 0 10
063000 | 120.0 | 40
064000 0 10
130000 | 85.0 | 50
130500 0 10
180000 | 150.0 | 40
182000 0 10

The format of the numbers is not important except for the first entry in each line:
the time. It must be given either with 6 digits or with 7 digits, where the first two or
three digits, respectively, count the hours, the following two the minutes and the last
two the seconds. So e.g. 103000 means half past 10 on the first day.

The total time span defined with the data file is read off PAR1. It is considered as
cyclic, i.e. when one time span has elapsed, the data file is read from the beginning to
give the input for the next time span.

Note that there are only entries in load.dat when something changes, here temper-
ature or mass flow. The values given after the time variable are used beginning from
that time until the time of the next entry.

The load profile unit can have inlet ports (not shown in the xfig picture), though
they cannot be connected to other units. Rather, the input variables always stay
at their input inital values, which can be used to divide between working days and
weekend: If the input initial value of INPn is set to 1, the corresponding output value
OUTn is set to 0 on weekends. Whether or not it’s a weekend is decided by the main
program which knows beginning and end date of the simulation.

Note that each outlet of load profile corresponds to a data column of the data
file, where the correspondance is one-to-one with the exception that OUT6,7,8 are left
out since they are reserved for the energy balance. So OUT5 presents the fifth column
of load.dat, and OUTY the sixth column.

5.6 Type related kernel routines

5.6.1 Radiation processor

The function rad_processor (contained in the source code file rad_processor.c) is
called from within types which balance solar energy, i.e. the solar collector and the wall
type. It is used to calculate Idt and Ibt, the diffuse and beam radiation incident onto
a tilted plane from Igh and Idh, the global and diffuse irradiation onto the horizontal
plane. The collector as well as the wall type call the radiation processor and provide
it with information about Igh and Idh, the albedo of the ambient, the current time,
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the location and the slope and orientation of the absorbing surface.

The first thing the radiation processor does is to calculate the solartime, the hour
angle and the declination. From this, the incidence angle ¥ of the beam radiation onto
the absorbing plane is calculated (the angle between the beam and the normal to the
plane). With ¥, as the incidence angle of the beam radiation onto the horizontal plane,
Ibt is given by Ibh - cos(V)/ cos(¥,) . If the sun is low, a correction is applied since the
term cos(¥,) diverges for 9, = 90°. Though Ibh is very small then, it does not vanish
completely for 9, = 90°but still is visible due to the diffraction in the atmosphere.

Then, Idt is calculated from Idh - 0.5 - (1 + cos(f3)), where (3 is the slope of the
surface (0 for horizontal surface). Another contribution to Igt, the global irradiation
onto the horizontal plane, is Irt, the irratiation reflected back from the ground. It is
given by Igh-0.5- (1 — cos(B) - pg, where p, is the albedo of the ambient. All formulas
origin from [1].

If a special horizon is defined, i.e. if PAR15 of collector or wall is set to 1, Idt
and Irt are recalculated by the function horizon (see section 5.6.2). Also, a shading
value is calculated which is 1 or 0 and either extinguishes the beam radiation totally
or leaves it unchanged.

In the new version of the radiation processor, also the radiation which is trans-
mitted through a glazing is calculated. From the collector or the walls, the value
by is delivered which characterizes the angular depencence of the transmittance. It
is used during the call of the function Incidence angle modifier (see section 5.6.3)
which returns multiplicative factors for the reduction of beam and diffuse radiation
by the glazing. Note, however, that these values still have to be multiplied with the
transmission factor at vanishing incidence angle.

The radiation processor returns all the calculated information about the irradia-
tion onto the tilted surface and in addition also the angles describing the position of
the sun, absolute and relative to the surface.

5.6.2 Horizon
5.6.3 Incidence angle modifier

5.6.4 Thermodynamics

The source code file thermodynamics.c contains several functions describing thermody-
namical relations. There is e.g. the function Get_Temp_from_enthalpy which is used to
calculate the temperature in a volume from the enthalpy and the masses of dry air,
water steam and water contained in it. Some functions also contain fit formulas, e.g.
Get_p_steam_s which calculates the partial pressure of water steam in saturated air as
a function of temperature. This formula is valid between 0 and 100 C (see e.g. |[2]
p.103f).

The maybe most important function of thermodynamics. c is called GetMixedOutPlug:
It calculates the mixing of an entering plug of humid air into the air volume correspond-
ing to one node, and determines temperature and composition (dry air/steam) of the
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outgoing plug. Here we give a short outline of the calculation:

First, the enthalpy of the plug is added to that of the node to give H,,, likewise
its masses of dry air and steam are added to those of the node, giving mgyymi; and
Miteam,miz- Lhe resident water of the node was temporarily added to meqm, mic- Then,
the absolute humidity of the mixture, s, is calculated from i, = Miieam,miz/Mdrymiz-
Now, there are two possibilities:

1. Tz < x4, where x4 is the absolute humidity of the saturated state, calculated
from the function Get_xs_from_enthalpy2(which depends upon the enthalpy of
the humid air, divided by the mass of dry air). This is the easy case since
there is no condensation, therefore no water (in liquid form) is present. The new
temperature simply follows from the function Get_Temp_from_enthalpy, since all
masses are known (the mass of dry air is always preserved, the mass of steam is
Tpmigtimes the mass of dry air and the mass of water vanishes).

2. Zmiz > 5. Now there is a problem: We know that condensation occurs during
the mixing and there is an unknown amount of water in the system. We know
that z,,;, equals x, then, but the problem is that the x, we calculated is most
probably wrong: We used the function Get_xs_from_enthalpy2 with the argument
Hier,/Miry,miz, but we know now that H,,,, also contains the enthalpy of water
and Get_xs_from_enthalpy2 expects only the enthalpy of humid air (i.e. dry air
and steam) as an argument.

But since the new temperature is unknown also, we can’t use the functions
Get_x(p_steam) and Get_p_steam_s(T) in combination either to calculate the new
Z,. On the other hand, the new temperature can only be calculated if the masses
of steam and water are known, and for this we need the right z, of the equilibrium
state.

Therefore, an iteration is necessary to determine the new mass relations and tem-
perature simultaneously: We start with the z, like calculated above and use it
to calculate temporary values for mgeammode = s * Mdrymiz A0 Mayater node =
Misteam,miz — Msteam,node. From these masses, a temporary temperature 7},;, can
be calculated with Get_Temp_from_enthalpy,since the total enthalpy H,, is con-
stant and known. From the new temperature, the enthalpy of the humid air can
be calculated from H ey — Muater,node * Tmia * CPwater; With cpyqeieras the specific heat
capacity of water. Now we have a better input value for Get_xs_from_enthalpy?2
and can calculate a closer guess for zg, etc. The iteration is stopped as soon as
the temperature changes by less than 0.0001 C.

Now the new equilibrium state is determined and the properties of the outgoing plug
can be calculated.

In thermodynamics.c there is also the function Get_alpha_air which calculates the
heat transfer of the air streaming in a pipe to the walls of the pipe.

5.6.5 Fuzzy routines
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6.2 System configuration
6.2.1 Tasks of the shell script coisim

In the following, the processes started by the call ColSim Systemname are explained in
detail, again with the help of a test system for demonstration.

Gapter 6 1

. The first command in the shell script ColSim concerns the definition of the path
to the ColSim directory, which depends upon the location where ColSim was
installed.

Structure dfolSim

2. Then, the ColSim customized xfig program is searched and, if found, established
as the standard xfig which is invoked via the xfig button in the ColSim menu.

3. Now it is checked whether Systemname corresponds to an existing project. If not,
the project_organizer is invoked and a project can be selected from it with a
double click.

In this chapter, it is explained how ColSim works from the configuration to the in-
dividual steps in the simulation run. It’s not absolutely necessary to read it if one
uses the menu based configuration and simulation and only works with the standard

systems (Schic}%tSpeicherSystem, StandardKollektorAnlage, etc.) with modified pa- 4. The chosen project is configured with the help of the program config. Wetll
rameters and slight rearrangements of types. come back to this in the next section.
However, for people who have to use the command line execution of system con-
figuration and simulation or who intend to modify parts of the source code or design 5. All source code files selected during the configuratino process are compiled with
completely new systems, this chapter is a “must”. the help of the makefile in ./src and the executable program sim is created in
the ColSim directory.
6.1 Installation 6. A link is set from load.dat in the ColSim directory (needed by the type load
profile, see section 5.5.7) to the file 1oad .Systemname . dat in the folder ./projects/Systemname.
The 'installation C(.)mmz?nd INSTALL, \lzvhich is executed directly after unpacking the 7. Links are set from sim.£igin ./cnv to Systemname.fig in ./projects/Systemnane,
ColSim programs, is a simple shell script. Its tasks are: and from sim.dek in the ColSim directory to Systemname.dek, alsoin ./projects/Systemname.
1. Setting a link from the file .xfig in the home directory to .xfig in the ColSim 8. The ColSim menu is invoked.
directory. The file .xfig is created by the graphic program Xfig and is used for
temporarily storing graphical objects. 6.2.2 The purpose of the routine config
2. Compiling the source code file config.c into the executable program config which The advantage of the special configuration method described in the following, is that
is important in the system configuration. it is highly flexible: The source code file which is used to describe a type in the system
can be exchanged by an alternative one very easily. In this way it is possible to modify
3. Creating the gnuplot data folders which are used by the fuzzy controller. the source code files and test the results by working with local copies in the projects

folder, leaving the original files unchanged. Then, the modifications will only affect the

4. Compiling the source codes in the folder ./cnv and creating the executable pro- current project and not all other ColSim projects, t0o.

gram cnv.exe (called

fig2dek in the menu) which is used to convert the graphical So the main task of the configuration routine config is to put together the right
simulation input into the more compact form used by the simulation program it- source code files needed for the simulation of the current system and to prepare
self. the right auxiliary files. By the xfig graphics file, the types appearing in the sys-

tem are determined, but there can be different source code files describing the same
type: The pipe e.g. can be described with pipel.c, pipe2.c or pipe3.c in the folder
./src/more_types, which differ in the way the physical processes in the pipe are mod-
eled. In the file ./cfg/default.cfg, the default settings are given. Take a look at it
with less ./cfg/default.cfg to study its structure:
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e The first column contains the name of a source code file or link corresponding
to the type of the same name, e.g. storage.c. Note that actually the types are
not identified by their names but by a type number contained as well in the xfig
picture of the types as in the comment part of the source code.

e The second column contains the name of the file linked with the name in the first
column. E.g. the storage is linked with storage4.c in the folder ./src/more_types
which is the default setting. An alternative would be storage3.c in the same
folder.

e The third column of the config file characterizes the entry as TYPE or KERNEL. Like
explained earlier, a type corresponds to a unit in the xfig graphics of a system
and to the source code file which is called for this unit at every time step of the
simulation run. On the contrary, files characterized by “KERNEL” are either
called by the main program or from within type related programs. An example
for the latter case is the radiation processor (see section 5.6.1).

When the configuration process is started for a system, the file ./cfg/default.cfg is
read first. Then, the config file of the system - Systemname.cfg - is read, which must be
present in the folder ./projects/SystemName. Here, all non-standard configurations are
listed. This may be replacements of standard versions of the source codes with non-
standard versions or completely new developed programs describing user-defined types.
In addition, the use of weather data sets other than the standard one in ./weather can
be defined (see section 5.5.5).

The determined configuration is written to the file running_config.cfg in ./cfg, if
something has changed with respect to the old running_config.cfg file. Then, the links
listed in the .cfg-files are set in the folder ./src, e.g. ./src/storage.c becomes a
link to ./src/more_types/storage4.c if nothing else was specified in Systemname.cfg.

Moreover, several files are created, mostly in the folder ./src:

e A makefile which contains compilation instructions for all source codes needed
by the system.

o The header file unit_order_init.h which lists a PRIORITY and a HYDRAULIC value
for each type. The values are read off the source code comments of the individual
types. When trying to implement newly developed types, both values must be
set correctly (see section 6.4.1 for details). The PRIORITY value will be used by
the program unit_order_init.c which, at the beginning of each simulation run,
determines the order in which the units will be called in every time step. The
HYDRAULIC variable describes the hydraulic function of the type.

o The header file global.h which contains definitions like the maximal number of
units, parameters, out-and inlets, etc. For these values, the file global.orig.h is
used as input. Moreover, the ColSim functions and their arguments are defined
in global.h. The structure of the functions is read off their source codes.
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e A program named type_call.c, which is called by the main program during the
simulation run. In every time step, the main program runs through all units of
the system according to a previously determined unit order (see section 6.4.1).
For every unit, it calls the function type_call, which determines the type of this
unit and calls the right function describing the type.

6.3 Conversion of the simulation script
In section 3.1.2, the conversion process was roughly explained already. The executable

program which is started with the button fig2dek in the ColSim menu is called cnv.exe
and can be found in the directory ./cnv. The source codes are in ./cnv/src. This pro-

gram opens the text file ./cnv/sim.fig (which is a link to ./projects/Systemname/Systemname.fig).

Take a look at sim.fig with the help of an editor or with less sim.fig in the folder
./cnv.

Although the parameters are not visible in the xfig graphics of the system, they
appear in this file. How the parameters are edited is explained in chapter 4. What
cnv.exe does is to read the information about the system from sim.fig and to write it
to sim_new.dek in more compact form:

e It reads in the type number and the name of each unit, which are given at the
top of the parameter list and after the letters INFO, respectively.

e It reads in the unit’s parameters found behind the letters PAR and the input inital
values following the letters INP.

o It identifies the lines connecting each unit’s in-and outlets to those of other units.

Moreover, it assigns unique, continuous unit numbers from 1 to n to the units. When
the conversion is finished, two new files are present in ./cnv, namely sim_new.dek and
sim_new.fig. The latter is an exact copy of sim.fig, except for the updated unit
numbers.

Then, take a look at sim_new.dek. For every unit of the system, all parameters are
listed here, and also the interconnections with other units in the following way: The
block which is titled “INPUTS?” lists for every input port of the unit under consideration
first the number of the unit, then the number of the outlet it is connected to. If an
input is not connected, both entries are zeros. In this case, the input inital value, given
in the block below, is assigned as a fixed value to this input.

There is one extra thing that fig2dek does apart from starting cnv.exe: It copies
the file ./cnv/sim_new.dek to ./projects/Example/Example.dek and sets a link from
sim.dek in the ColSim directory to the dek file in the projects folder. This step is not
necessary when doing a command line execution of a simulation. It is sufficient to link
sim.dek in the ColSim directory to sim_new.dek in the folder ./cnv (see section 3.2.2).
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6.4 The simulation run

6.4.1 Initialization procedure

When the simulation program is started by using the g; 1 button in the menu or by

typing sim in the ColSim directory, the main program is started (source code main.c, in
the folder ./src like all functions discussed in the following). After initializing variables
and arrays, it calls as the first function dek_reader.c. The latter opens the simulation
dek ./sim.dek and reads in the information about how many units and which types
are used in the system, their parameters and their interconnections. The parameters
of the unit sim control, which must be present in every system, are used immediately
for calculating beginning and end of the simulation time in seconds.

Then, the function unit_order_init (source code file unit_order_init.c) is called.
It determines the order, in which the individual units will be called in every time step
by creating an onedimensional array called unit_order which contains the unit numbers
to be called subsequently. For this purpose, it uses the header file unit_order_init.h
which was created during the configuration process. In this file, a PRIORITY number is
assigned to each type, except for sim control. Types with low priority numbers are
called first within one timestep in the following way:

1. The type sim control needs no PRIORITY number, since it is only called once at
the beginning of the simulation, not in every time step. It sets beginning and
end of the simulation and the lenght of one time step.

2. Both of the types weather and load_profile have PRIORITY 1. When weather is
called it reads the weather and radiation data from the adequate file in the folder
./weather and makes it accessible to other units. Similarly, the type load_profile
reads the consumer load profile from the file 1oad.dat.

3. The equation types has priority number 2.

4. The controller types have PRIORITY 3. On the basis of measured temperature
values from the last time step, they set controller signals for pumps and diverters
for the actual time step.

5. The first hydraulic type to be called in every time step is a pump. Pumps have
PRIORITY 5, whether it’s a fluid pump or a pump_air, i.e. a ventilator. The pump
in a hydraulic cycle is always called before the other units, since it sets the mass
flow for the whole cycle. As mentioned before, ColSim is based on plug flow
modeling, therefore at the beginning of a time step the pump puts out a plug of
fluid with mass mp-h. Here, mp is the fluid mass per time being pumped through
the cycle and h is the simulation time step. Every hydraulic unit succeeding the
pump receives the plug and sends it on to the next unit within the cycle.

6. All hydraulic types (by which we also mean the ventilation types) except for
pumps have PRIORITY 6. The hydraulic types of a specific cycle are called after
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the pump of this cycle according to the order in which they are passed by the
fluid. Since at branching points, this criterion is not sufficient to determine a
unique unit order, the function init_set_mp (source code file init_set_mp.c) is
called from within unit_order_init. How this function works is discussed in
detail in the next paragraph.

7. The pump is called a second time after the other units of its hydraulic cycle in
order to compare the mass of the incoming plug to that of the plug sent out
before (but in the same time step). If they are not equal, the program is stopped.
Also, the thermal energy is balanced (also see section 5.2.4for details). After one
hydraulic cycle is completed, the next pump and its cycle are calculated.

8. The AirRad_node has PRIORITY 10, so it is called after the hydraulic types, but
before the wall types. Therefore, it receives the current room temperature from
pipe_air, but the gains from the walls stem from the last time step.

9. The wall types have PRIORITY 12, i.e. they are called after the AirRad_node.

10. Gnuplotter and printer, with PRIORITY number 15, are called last since they
don’t influence the physical behaviour of the system.

In the header file unit_order_init.h, not only a PRIORITY number but also a HYDRAULIC
number is assigned to each type. This number contains information about the hydraulic
qualities of the type and is used by the function init_set_mp to determine the unit
order within hydraulic cycles. In init_set_mp, one hydraulic cycle after the other is
run through and the units contained in it are ordered in the following way by assigning
a unit order number to each of them:

1. Fluid types with HYDRAULIC number 1 possess only one heat flow inlet and one
heat flow outlet. Examples are the collector, the pipes, the heater, etc. All units
with this HYDRAULIC number are simply ordered in the way they are passed by the
fluid leaving the pump. The ventilation type pipe_air has HYDRAULIC number 32,
the heater_air has number 50.

2. The pump carries HYDRAULIC number 3 (pump_air: 49), though it also has only
one mass flow inlet and one outlet. However, the pump is a special hydraulic
type, since the calculcation of a hydraulic cycle starts and ends at the cycle’s
pump, i.e. the pumps are called twice in every time step. Therefore, each pump
appears twice in the list of unit numbers to be called subsequently at every time
step.

3. The storage carries HYDRAULIC number 4. It possesses many heat flow in-and
outlets, and the calculation of all cycles must be finished before the storage’s
system quantities can be updated. Therefore, the storage is called several times
in one time step and its unit number will consequently appear several times in the
array unit_order. When init_set_mp reaches a storage while running through
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Figure 6.1: Unit ordering at branching points.

a hydraulic cycle, it continues with the unit after the storage which belongs to
the same cycle'. When during the simulation run a hydraulic cycle connected to
the storage is calculated, old temperature values from the last time step are used
instead of the not yet availabe updated values. In each time step, only the last
hydraulic cycle with connection to the storage receives updated values from the
storage’s outlets. However, due to its large heat capacity and large inherent time
scale, this poses no problems.

4. The heat exchanger, which carries HYDRAULIC number 10 and has two heat flow
inlets and two outlets, is treated in a different way: When a heat exchanger is
encountered by init_set_mp for the first time, the program leaves the correspond-
ing cycle and continues with the other cycles until the cycle is finished which is
connected to the same heat exchanger. Then, it returns to the heat exchanger
and finishes the unfinished cycle. Therefore, the heat exchanger is called three
times in each time step. Note that heatexchanger_air (HYDRAULIC number 50) is
a different case since it has only one heat flow inlet and one outlet.

5. The diverter has HYDRAULIC number 11 (diverter_air:47). Fig.6.1 illustrates
what happens at such a branching point: The program init_set_mp first continues
with an arbitrary unit succeeding the diverter. Several units later, a mixer must
appear, since in ColSim only closed hydraulic cycles are allowed. If it is found
that the mixer’s output cannot be calculated since no current input values are at
hand, the program returns to the diverter and continues with the second branch.
Also branchings inside branchings are possible.

6. The mixer has HYDRAULIC number 13 (mixer_air: 48). Just like the diverter, it
is always called two times within one time step.

7. All other types (i.e. with no heat flow in-and outlets) carry HYDRAULIC number
99.

!As an example: When the unit before the storage was connected to the storage via the auxiliary
heater inlet, as the following unit the one is chosen which is connected to the storage via the auxiliary
heater outlet.
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The determined unit order can be viewed by starting the simulation with sim -d |
more. Then, the unit numbers and the type names of all units are shown during the
program execution. The array select_unit counts the calls of the storage within one
time step. See also the source code of the main program, main.c, and check the use of
unit_order.

6.4.2 Main loop

When the process of determining the right unit order is completed and the array
unit_order is filled with all unit numbers to be called subsequently during one time
step, the simulation starts. The main program calculates start and endtime of the
simulation and prints out the actual day. In the main loop over all simulation time
steps, a second loop is contained which runs through all entries in the array unit_order,
i.e. it runs through all units in the system according to their previously determined
order. Within this loop, the function type_call.c is called, which was generated during
the configuration process. In type_call, first the type is identified which corresponds
to the current unit number, then the function describing this type is called. To most
of these functions, the following important variables and arrays are handed over which
type_call itself receives from the main program:

1. The variable unit informs the function about the current unit number. Since the
same type, e.g. a pipe, can appear several times in a system, the unit number is
needed in order to identify the right parameters and to store the calculated state
quantities of the unit.

2. The twodimensional array par[n][i], where n is a unit number and i numbers
the parameters of each unit. This array is filled at the beginning of the program
run with the parameters read from sim.dek. Note that there is a macro defined
in ./src/global.h: PAR(i) means the same as par[n][i].

3. The array in_u[n] [i], where i numbers the inlets of each unit. The array element
in_u[unit] [k] contains the number of that unit which is connected to the current
unit via its inlet port number k.

4. The array in_nr[n] [i], where i numbers the inlets of each unit again, but now
the array element in_nr[unit] [k] contains the outlet number of that unit which
is connected to the current unit via its inlet port number k.

5. The arrays out_o[n] [i] and out_n[n] [i], where i numbers the outlets or output
variables of each unit. For out_n[n][i], the macro 0UT (i) was defined. The
array element out_o[unit] [k] contains the value of the kth output variable of
the current unit which was calculated at the last time step. Likewise, in out_n
the newly calculated values are stored. Note that these arrays are used on the
one hand to store at short notice system quantities for internal calculations, e.g.
sometimes the old values are needed as a basis for the calculation of the new
values. Moreover, in out_n[n][i],i=6,7,8 the nth unit’s energy input, its output
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and its internal energy are stored, respectively, and used for the system energy
balance at every time step.

On the other hand, the output variables are at the user’s disposal for information
about the system state: For each existing output number of a unit (different
types have a different number of output variables, see chapter 5), an output box
can be drawn in the xfig picture of the system. This box can be connected to a
gnuplotter or a printer, by which information about the specific output variable
can be visualized or stored (see chapter 4for instructions on such manipulations).

. The temperature arrays deriv_o[n] [i] and deriv_n[n][i], where i numbers the
nodes of each unit. Some types are divided into several nodes like e.g. the pipe,
the storage and the collector, others consists of only one “node” or are not assigned
a temperature at all (in this case, these fields are not handed over). The array
element deriv_o[unit] [k] contains the old temperature at node k of the current
unit. Likewise, in deriv_n the newly calculated temperatures of node k will be
stored.

. The variable h contains the lenght of one simulation time step in seconds.

. The array init_energy[n][i], where i numbers the nodes of each unit. The array
element init_energy[unit|[k| contains the initial energy of the current unit’s node
number k. Since the fluid in the system is considered as incompressible, “energy”
equals “thermal energy”. The reference point for the thermal energies in ColSim is
a temperature of 0 C, i.e. the energy of a node with 0 C vanishes. The energy of a
node is calculated from its heat capacity multiplied by its temperature difference
with respect to 0 C.

. The threedimensional array qp_sum[n] [i] [j1, where i numbers the nodes of each
unit and j denotes the sums of different energies gained or lost. This array is
not handed over to all type functions, only to those types which are assigned
a temperature. E.g. in the pipe with the unit number unit, the array element
qp_sum[unit] [k] [1] denotes the summed up energy losses of node k to the am-
bient. Contrary to this, the element qp_sum[unit] [k] [2] contains the sum of the
external gains, where “sum” means a sum over all time steps from the start of the
simulation to the current simulation time. Likewise, the incoming and outgoing
energies are stored in order to calculate the new temperature of node k from the
total sum over all energies, divided by the node’s heat capacity.

10. The variable tsim counts the actual simulation time of the current day in seconds.

1. The variable init_flag is set to 1 at the beginning of the simulation run. In every

function describing a type, there is a special part only for the case init_flag=1
where parameters are checked for plausibility, inital energies and temperatures
are set and some variables are set to their default values. After this initialization
loop, init_flag is set to 0.
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The function describing a type first reads in the information about parameters and old
node temperatures. Then, the incoming signals, e.g. the mass and the heat flow arriv-
ing at the unit’s inlet ports are read in from the array out_n with the help of the constant
arrays in_u and in_nr: The array element out_n[in_ulunit] [k]] [in_nr[unit] [k]]
refers to the unitts inlet number k. Literally, this array element contains the cur-
rent output of the unit’s predecessor unit, to be specific that output which arrives at

the current unit’s inlet port number k (s¢¢ the explanation of in_u and in_nr in the
paragraph above). Since the above expression is somewhat lenghty, the macro IN(k)

was defined for [in_u[unit] [k]][in_nr[unit] [k]1], so inlet k of a unit can be addressed
by out_n IN(k).

Since the calculation of the units in ColSim proceeds according to the mass flow,
the predecessor unit’s newly calculated output for the actual time step can be used as
input for the current unit in the same time step. If a unit has more than one predecessor
unit, e.g. a mixer or a heat exchanger, it is called several times until all input values
are updated (see section 6.4.1).

When the input is complete, the function starts calculating the behaviour of the
current unit, then actualizes its column of the output array 0UT(i), if necessary sums
up the lossed and gained internal energies in qp_sum to calculates the new temperatures
and eventually returns control to the main program. More about the physics and
modeling of the types in chapter 5.

Within the loop over all entries in the array unit_order, all units in the system
are calculated according to this previously determined order. Afterwards, at the end
of each time step, the main program performs an energy balance with the help of
the function energy_outcome.c which balances the entries in QUT(i),i=6,7,8, summed
over all units with heat flow. For more complicated types like the storage and the
collector, more detailed energy balances are performed. If a certain tolerance in the
balance is exceeded, the program execution is stopped.

The last commands in the time loop of main are concerned with switching the out_o
with the out_n array and the deriv_o with the deriv_n array. Then, the next time step
is calculated, until the end of the given simulation time interval is reached.
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Gapter 7

Programmer’s section

7.1 How to integrate new types into the system

Here, we deal with the case that for a special system called Systemname a standard type
is exchanged with a non-standard type or a modified standard type, but the name of
the type stays the same. E.g. in the simulation of Systemname instead of the standard
fluid pipe (pipe2.c or pipe3.c. depending on the ColSim version) pipel.c should be
used.

Then, the only thing necessary is to edit the configuration file of the system, in this
case ./projects/Systemname/Systemname.cfg.

If there is no entry yet for the pipe, i.e. the standard pipe model mentioned in
./cfg/default.cfg is used, the following line must be added:

pipe2.c src/more_types/pipel.c TYPE.

Note that the reason why the generic pipe type is called pipe2.c here and not simply
pipe.c is that “pipe” is a reserved name in Linux operating systems. Now save the file
and exit the editor.

The configuration process can be started by closing the ColSim menu for the sys-
tem and typing ColSim Systemname again. Alternatively, it can also be done without
closing the menu by changing into the folder ./cfg and typing: config ../projects/-
Systemname/Systemname.cfg. This program sets the links listed in ./cfg/default.cfg
and ./projects/Example/Example.cfg. Afterwards, a new compilation must be per-
formed, either with the

./src.

7.2 How to write new types

By this we mean a type which didn’t exist before, i.e. which receives a type number
not used before. The easiest way to create such a new type is to copy the source code
of an existing type as similar as possible and adapt the comment part at the beginning
of the function. This comment part is important for the configuration process. Take a
look at ./src/init_type_def_string.c and choose a type number not used yet. Make
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make button of the ColSim menu or by typing m in the folder

an entry with the name of the new type. If you append the type after the last existing
entry, correct the number of types in the program lines below.

Then, a PRIORITY and HYDRAULIC number must be chosen with the help of
the information in section 6.4.1. Next, the comments to parameters, in-and outlets
should be adapted, since they appear in the info_edit window later.

Now the program code, written in ANSI-C follows. Note that there is an init_flag,
which can be used for commands only to be executed once at program start. Please
read chapter 6 for information about the global arrays. Note that the energy balance
will also be performed for the new type, therefore, OUT 6,7,8 must be set correctly. If
itts a hydraulic or ventilation type with mass flow, it consists of one or several nodes
and the array DERIV (i) must receive the actual node temperatures. See ./src/global.h
for preprocessor definitions and macros.

At the end of the function characterizing the new type, the array 0UT(i) G.e.
out_n[unit] [i]) must be filled with the calculated values according to the explanations
given in the comment part. These values can be made accessible to other units in the
following way:

A xfig object must be created corresponding to the new type. Again, the best way is
to copy an existing unit from a xfig graphics of a ColSim system and modify it. Follow
the instructions in section 4.3.6 for opening the compound, then the individual parts
of the unit can be deleted, modified or replaced with new graphical symbols. Also, the
right in-and outlet boxes (corresponding to the in-and outlets used in the source code)
can be created by changing the numbers in the old ones, if necessary. If finished, create
a compound object again and copy it into the xfig graphics of the system which should
contain the new type.

Now all units connected to the outlet boxes of the new type should be able to
receive the values written to the out_n array in the program code. First, try to set
the parameters of the new type by deleting it from the system graphics with the right
mouse button, then choose sort .xfig in the ColSim menu. If you open the info_ edit
window afterwards, the right number of parameters together with the right comments
(like written in the source code file) should appear. Edit the parameters and try to
convert your system graphics with fig2dek afterwards,
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There are three reference systems at this time:

1. SchichtSpeicherSystem for the fluid systems. To check whether the fluids types
function correctly, use SchichtSpeicherSystem.fig without any changes and per-
form a simulation. Then, the essential quantity is the auxiliary heating energy for
one year which can be read off the entry for INP 4 in sim_outO_total.dat. The
value should be 1081 kWh (ColSim0.57). Note that in this system the simulation
time step shouldntt be chosen much larger than 10 secs, otherwise the simulation
results start to depend upon the time step.

2. Simple_zone for the thermodynamics. Copy simple_zone.ref.fig onto simple_zone.fig
and load.ref.dat onto load.simple_zone.dat. Then perform a simulation. The
reference results for the room temperature, the relative and absolute humidity
are stored in the picture ref.mgr. Type xmgr or xmgrace to start the graphics
program, open ref .mgr in it and load the simulation results (sim_out1.dat, plot
columns 3,4,5 versus column 1) into the picture in order to compare them with
the reference results.

3. Zonel for the building types: Copy zonel.trnsys.fig onto zonel.fig, then type
check_ref.ssc. This shell script starts the simulation and evaluates the results
automatically. In addition, a picture is shown with the calculated room temper-
ature compared to that of a Trnsys simulation.
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